skip to main content


Title: WIP: An Ecosystems Metaphor for Propagation
In this work-in-progress paper, we apply the ecosystems metaphor to develop a model to address the ways a technology-based tool, the Concept Warehouse (Koretsky et al., 2014), propagates in diverse settings and to how students use the tool in their learning. The ecosystem model goes beyond previous research using the Diffusion of Innovations framework (Rogers, 2005). While Diffusion of Innovations has been applied to educational innovations in engineering education (Borrego et al., 2010), physics education (Henderson and Dancy, 2008), and medical education (Rogers, 2002), it does not adequately account for the ways in which instructional and learning practices are socially situated within specific educational ecosystems, nor how those systems influence the ways in which practices are taken up by individuals and groups.  more » « less
Award ID(s):
1821439
NSF-PAR ID:
10175908
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASEE annual conference proceedings
ISSN:
1524-4857
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work-in-progress paper, we apply the ecosystems metaphor to develop a model to address the ways a technology-based tool, the Concept Warehouse (Koretsky et al., 2014), propagates in diverse settings and to how students use the tool in their learning. The ecosystem model goes beyond previous research using the Diffusion of Innovations framework (Rogers, 2005). While Diffusion of Innovations has been applied to educational innovations in engineering education (Borrego et al., 2010), physics education (Henderson and Dancy, 2008), and medical education (Rogers, 2002), it does not adequately account for the ways in which instructional and learning practices are socially situated within specific educational ecosystems, nor how those systems influence the ways in which practices are taken up by individuals and groups. 
    more » « less
  2. Facility with foundational practices in computer science (CS) is increasingly recognized as critical for the 21st century workforce. Developing this capacity and broadening participation in CS disciplines will require learning experiences that can engage a larger and more diverse student population (Margolis et al., 2008). One promising approach involves including CS concepts and practices in required subjects like science. Yet, research on the scalability of educational innovations consistently demonstrates that their successful uptake in formal classrooms depends on teachers’ perceived alignment of the innovations with their goals and expectations for student learning, as well as with the specific needs of their school context and culture (Blumenfeld et al., 2000; Penuel et al., 2007; Bernstein et al., 2016). Research is nascent, however, about how exactly to achieve this alignment and thereby position integrated instructional models for uptake at scale. To contribute to this understanding, we are developing and studying two units for core middle school science classrooms, known as Coding Science Internships. The units are designed to support broader participation in CS, with a particular emphasis on females, by expanding students’ perception of the nature and value of coding. CS and science learning are integrated through a simulated internship model, in which students, as interns, apply science knowledge and use computer programming as a tool to address real-world problems. In one unit, students gain first-hand experience with sequences, loops, and conditionals as they program and debug an interactive scientific model of a coral reef ecosystem under threat. The second unit engages students in learning concepts related to data analysis and visualization, abstraction, and modularity as they code data visualizations using real EPA air quality data. A core goal for both units is to provide students experience with some of the increasingly prevalent ways that computer science is integrated into the work of scientists. 
    more » « less
  3. There have been numerous demands for enhancements in the way undergraduate learning occurs today, especially at a time when the value of higher education continues to be called into question (The Boyer 2030 Commission, 2022). One type of demand has been for the increased integration of subjects/disciplines around relevant issues/topics—with a more recent trend of seeking transdisciplinary learning experiences for students (Sheets, 2016; American Association for the Advancement of Science, 2019). Transdisciplinary learning can be viewed as the holistic way of working equally across disciplines to transcend their own disciplinary boundaries to form new conceptual understandings as well as develop new ways in which to address complex topics or challenges (Ertas, Maxwell, Rainey, & Tanik, 2003; Park & Son, 2010). This transdisciplinary approach can be important as humanity’s problems are not typically discipline specific and require the convergence of competencies to lead to innovative thinking across fields of study. However, higher education continues to be siloed which makes the authentic teaching of converging topics, such as innovation, human-technology interactions, climate concerns, or harnessing the data revolution, organizationally difficult (Birx, 2019; Serdyukov, 2017). For example, working across a university’s academic units to collaboratively teach, or co-teach, around topics of convergence are likely to be rejected by the university systems that have been built upon longstanding traditions. While disciplinary expertise is necessary and one of higher education’s strengths, the structures and academic rigidity that come along with the disciplinary silos can prevent modifications/improvements to the roles of academic units/disciplines that could better prepare students for the future of both work and learning. The balancing of disciplinary structure with transdisciplinary approaches to solving problems and learning is a challenge that must be persistently addressed. These institutional challenges will only continue to limit universities seeking toward scaling transdisciplinary programs and experimenting with novel ways to enhance the value of higher education for students and society. This then restricts innovations to teaching and also hinders the sharing of important practices across disciplines. To address these concerns, a National Science Foundation Improving Undergraduate STEM Education project team, which is the topic of this paper, has set the goal of developing/implementing/testing an authentically transdisciplinary, and scalable educational model in an effort to help guide the transformation of traditional undergraduate learning to span academics silos. This educational model, referred to as the Mission, Meaning, Making (M3) program, is specifically focused on teaching the crosscutting practices of innovation by a) implementing co-teaching and co-learning from faculty and students across different academic units/colleges as well as b) offering learning experiences spanning multiple semesters that immerse students in a community that can nourish both their learning and innovative ideas. As a collaborative initiative, the M3 program is designed to synergize key strengths of an institution’s engineering/technology, liberal arts, and business colleges/units to create a transformative undergraduate experience focused on the pursuit of innovation—one that reaches the broader campus community, regardless of students’ backgrounds or majors. Throughout the development of this model, research was conducted to help identify institutional barriers toward creating such a cross-college program at a research-intensive public university along with uncovering ways in which to address these barriers. While data can show how students value and enjoy transdisciplinary experiences, universities are not likely to be structured in a way to support these educational initiatives and they will face challenges throughout their lifespan. These challenges can result from administration turnover whereas mutual agreements across colleges may then vanish, continued disputes over academic territory, and challenges over resource allotments. Essentially, there may be little to no incentives for academic departments to engage in transdisciplinary programming within the existing structures of higher education. However, some insights and practices have emerged from this research project that can be useful in moving toward transdisciplinary learning around topics of convergence. Accordingly, the paper will highlight features of an educational model that spans disciplines along with the workarounds to current institutional barriers. This paper will also provide lessons learned related to 1) the potential pitfalls with educational programming becoming “un-disciplinary” rather than transdisciplinary, 2) ways in which to incentivize departments/faculty to engage in transdisciplinary efforts, and 3) new structures within higher education that can be used to help faculty/students/staff to more easily converge to increase access to learning across academic boundaries. 
    more » « less
  4. Nicewonger, Todd E. ; McNair, Lisa D. ; Fritz, Stacey (Ed.)
    https://pressbooks.lib.vt.edu/alaskanative/ At the start of the pandemic, the editors of this annotated bibliography initiated a remote (i.e., largely virtual) ethnographic research project that investigated how COVID-19 was impacting off-site modular construction practices in Alaska Native communities. Many of these communities are located off the road system and thus face not only dramatically higher costs but multiple logistical challenges in securing licensed tradesmen and construction crews and in shipping building supplies and equipment to their communities. These barriers, as well as the region’s long winters and short building seasons, complicate the construction of homes and related infrastructure projects. Historically, these communities have also grappled with inadequate housing, including severe overcrowding and poor-quality building stock that is rarely designed for northern Alaska’s climate (Marino 2015). Moreover, state and federal bureaucracies and their associated funding opportunities often further complicate home building by failing to accommodate the digital divide in rural Alaska and the cultural values and practices of Native communities.[1] It is not surprising, then, that as we were conducting fieldwork for this project, we began hearing stories about these issues and about how the restrictions caused by the pandemic were further exacerbating them. Amidst these stories, we learned about how modular home construction was being imagined as a possible means for addressing both the complications caused by the pandemic and the need for housing in the region (McKinstry 2021). As a result, we began to investigate how modular construction practices were figuring into emergent responses to housing needs in Alaska communities. We soon realized that we needed to broaden our focus to capture a variety of prefabricated building methods that are often colloquially or idiomatically referred to as “modular.” This included a range of prefabricated building systems (e.g., manufactured, volumetric modular, system-built, and Quonset huts and other reused military buildings[2]). Our further questions about prefabricated housing in the region became the basis for this annotated bibliography. Thus, while this bibliography is one of multiple methods used to investigate these issues, it played a significant role in guiding our research and helped us bring together the diverse perspectives we were hearing from our interviews with building experts in the region and the wider debates that were circulating in the media and, to a lesser degree, in academia. The actual research for each of three sections was carried out by graduate students Lauren Criss-Carboy and Laura Supple.[3] They worked with us to identify source materials and their hard work led to the team identifying three themes that cover intersecting topics related to housing security in Alaska during the pandemic. The source materials collected in these sections can be used in a variety of ways depending on what readers are interested in exploring, including insights into debates on housing security in the region as the pandemic was unfolding (2021-2022). The bibliography can also be used as a tool for thinking about the relational aspects of these themes or the diversity of ways in which information on housing was circulating during the pandemic (and the implications that may have had on community well-being and preparedness). That said, this bibliography is not a comprehensive analysis. Instead, by bringing these three sections together with one another to provide a snapshot of what was happening at that time, it provides a critical jumping off point for scholars working on these issues. The first section focuses on how modular housing figured into pandemic responses to housing needs. In exploring this issue, author Laura Supple attends to both state and national perspectives as part of a broader effort to situate Alaska issues with modular housing in relation to wider national trends. This led to the identification of multiple kinds of literature, ranging from published articles to publicly circulated memos, blog posts, and presentations. These materials are important source materials that will likely fade in the vastness of the Internet and thus may help provide researchers with specific insights into how off-site modular construction was used – and perhaps hyped – to address pandemic concerns over housing, which in turn may raise wider questions about how networks, institutions, and historical experiences with modular construction are organized and positioned to respond to major societal disruptions like the pandemic. As Supple pointed out, most of the material identified in this review speaks to national issues and only a scattering of examples was identified that reflect on the Alaskan context. The second section gathers a diverse set of communications exploring housing security and homelessness in the region. The lack of adequate, healthy housing in remote Alaska communities, often referred to as Alaska’s housing crisis, is well-documented and preceded the pandemic (Guy 2020). As the pandemic unfolded, journalists and other writers reported on the immense stress that was placed on already taxed housing resources in these communities (Smith 2020; Lerner 2021). The resulting picture led the editors to describe in their work how housing security in the region exists along a spectrum that includes poor quality housing as well as various forms of houselessness including, particularly relevant for the context, “hidden homelessness” (Hope 2020; Rogers 2020). The term houseless is a revised notion of homelessness because it captures a richer array of both permanent and temporary forms of housing precarity that people may experience in a region (Christensen et al. 2107). By identifying sources that reflect on the multiple forms of housing insecurity that people were facing, this section highlights the forms of disparity that complicated pandemic responses. Moreover, this section underscores ingenuity (Graham 2019; Smith 2020; Jason and Fashant 2021) that people on the ground used to address the needs of their communities. The third section provides a snapshot from the first year of the pandemic into how CARES Act funds were allocated to Native Alaska communities and used to address housing security. This subject was extremely complicated in Alaska due to the existence of for-profit Alaska Native Corporations and disputes over eligibility for the funds impacted disbursements nationwide. The resources in this section cover that dispute, impacts of the pandemic on housing security, and efforts to use the funds for housing as well as barriers Alaska communities faced trying to secure and use the funds. In summary, this annotated bibliography provides an overview of what was happening, in real time, during the pandemic around a specific topic: housing security in largely remote Alaska Native communities. The media used by housing specialists to communicate the issues discussed here are diverse, ranging from news reports to podcasts and from blogs to journal articles. This diversity speaks to the multiple ways in which information was circulating on housing at a time when the nightly news and radio broadcasts focused heavily on national and state health updates and policy developments. Finding these materials took time, and we share them here because they illustrate why attention to housing security issues is critical for addressing crises like the pandemic. For instance, one theme that emerged out of a recent National Science Foundation workshop on COVID research in the North NSF Conference[4] was that Indigenous communities are not only recovering from the pandemic but also evaluating lessons learned to better prepare for the next one, and resilience will depend significantly on more—and more adaptable—infrastructure and greater housing security. 
    more » « less
  5. It has been well-established that concept-based active learning strategies increase student retention, improve engagement and student achievement, and reduce the performance gap of underrepresented students. Despite the evidence supporting concept-based instruction, many faculty continue to stress algorithmic problem solving. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. Our project aims to propagate the Concept Warehouse (CW), an online innovation tool that was developed in the Chemical Engineering community, into Mechanical Engineering (ME). A portion of our work focuses on content development in mechanics, and includes statics, dynamics, and to a lesser extent strength of materials. Our content development teams had created 170 statics and 253 dynamics questions. Additionally, we have developed four different simulations to be embedded in online Instructional Tools – these are interactive modules that provided different physical scenarios to help students understand important concepts in mechanics. During initial interviews, we found that potential adopters needed coaching on the benefits of concept-based instruction, training on how to use the CW, and support on how to best implement the different affordances offered by the CW. This caused a slight shift in our initial research plans, and much of our recent work has concentrated on using faculty development activities to help us advertise the CW and encourage evidence-based practices. From these activities, we are recruiting participants for surveys and interviews to help us investigate how different contexts affect the adoption of educational innovations. A set of two summer workshops attracted over 270 applicants, and over 60 participants attended each synchronous offering. Other applicants were provided links to recordings of the workshop. From these participants, we recruited 20 participants to join our Community of Practice (CoP). These members are sharing how they use the CW in their classes, especially in the virtual environment. Community members discuss using evidence-based practices, different things that the CW can do, and suggest potential improvements to the tool. They will also be interviewed to help us determine barriers to adoption, how their institutional contexts and individual epistemologies affect adoption, and how they have used the CW in their classes. Our research will help us formulate strategies that others can use when attempting to propagate pedagogical innovations. 
    more » « less