Abstract This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating “slow” and “fast” shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue.
more »
« less
Shear Wave Propagation and Estimation of Material Parameters in a Nonlinear, Fibrous Material
Abstract This paper describes the propagation of shear waves in a Holzapfel–Gasser–Ogden (HGO) material and investigates the potential of magnetic resonance elastography (MRE) for estimating parameters of the HGO material model from experimental data. In most MRE studies the behavior of the material is assumed to be governed by linear, isotropic elasticity or viscoelasticity. In contrast, biological tissue is often nonlinear and anisotropic with a fibrous structure. In such materials, application of a quasi-static deformation (predeformation) plays an important role in shear wave propagation. Closed form expressions for shear wave speeds in an HGO material with a single family of fibers were found in a reference (undeformed) configuration and after imposed predeformations. These analytical expressions show that shear wave speeds are affected by the parameters (μ0, k1, k2, κ) of the HGO model and by the direction and amplitude of the predeformations. Simulations of corresponding finite element (FE) models confirm the predicted influence of HGO model parameters on speeds of shear waves with specific polarization and propagation directions. Importantly, the dependence of wave speeds on the parameters of the HGO model and imposed deformations could ultimately allow the noninvasive estimation of material parameters in vivo from experimental shear wave image data.
more »
« less
- Award ID(s):
- 1727412
- PAR ID:
- 10175952
- Date Published:
- Journal Name:
- Journal of Biomechanical Engineering
- Volume:
- 142
- Issue:
- 5
- ISSN:
- 0148-0731
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magnetic resonance elastography (MRE) has emerged as a sensitive imaging technique capable of providing a quantitative understanding of neural microstructural integrity. However, a reliable method for the quantification of the anisotropic mechanical properties of human white matter is currently lacking, despite the potential to illuminate the pathophysiology behind neurological disorders and traumatic brain injury. In this study, we examine the use of multiple excitations in MRE to generate wave displacement data sufficient for anisotropic inversion in white matter. We show the presence of multiple unique waves from each excitation which we combine to solve for parameters of an incompressible, transversely isotropic (ITI) material: shear modulus, μ, shear anisotropy, ϕ, and tensile anisotropy, ζ. We calculate these anisotropic parameters in the corpus callosum body and find the mean values as μ = 3.78 kPa, ϕ = 0.151, and ζ = 0.099 (at 50 Hz vibration frequency). This study demonstrates that multi-excitation MRE provides displacement data sufficient for the evaluation of the anisotropic properties of white matter.more » « less
-
Objective: To establish the sensitivity of magnetic resonance elastography (MRE) to active muscle contraction in multiple muscles of the forearm. Methods: We combined MRE of forearm muscles with an MRI-compatible device, the MREbot, to simultaneously measure the mechanical properties of tissues in the forearm and the torque applied by the wrist joint during isometric tasks. We measured shear wave speed of thirteen forearm muscles via MRE in a series of contractile states and wrist postures and fit these outputs to a force estimation algorithm based on a musculoskeletal model. Results: Shear wave speed changed significantly upon several factors, including whether the muscle was recruited as an agonist or antagonist (p = 0.0019), torque amplitude (p ≤ 0.0001), and wrist posture (p = 0.0002). Shear wave speed increased significantly during both agonist (p ≤ 0.0001) and antagonist (p = 0.0448) contraction. Additionally, there was a greater increase in shear wave speed at greater levels of loading. The variations due to these factors indicate the sensitivity to functional loading of muscle. Under the assumption of a quadratic relationship between shear wave speed and muscle force, MRE measurements accounted for an average of 70% of the variance in the measured joint torque. Conclusion: This study shows the ability of MM-MRE to capture variations in individual muscle shear wave speed due to muscle activation and presents a method to estimate individual muscle force through MM-MRE derived measurements of shear wave speed. Significance: MM-MRE could be used to establish normal and abnormal muscle co-contraction patterns in muscles of the forearm controlling hand and wrist function.more » « less
-
Elastic full-waveform inversion (EFWI) is a state-of-the-art seismic tomographic method. Recent advances in technology and instrumentation, combining crosstalk-free source-encoded FWI (SE-FWI) with multicomponent marine data acquisition using ocean-bottom nodes (OBNs), enable full-physics wave propagation and parameter inversion without the computational burden of traditional FWI. With OBN acquisition, P waves, S waves, and P-to-S conversions are recorded. It is not well understood to what extent adding horizontal components to SE-FWI improves the resolution of subsurface modeling. We assess their potential for the reconstruction of shear and compressional wave speeds (VPand VS) by using a synthetic data set modeled after a recently acquired OBN survey in the North Sea. We perform synthetic inversion tests to design suitable strategies that leverage the information recorded in the horizontal components of the data to improve the reconstructed model resolution laterally and in depth. We advocate for a hierarchical inversion approach to recover the elastic parameters. We exploit the P and P-to-S converted waves recorded on the horizontal components to robustly reconstruct both VPand VS. Adding horizontal components to the SE-FWI modeling workflow results in improved spatial resolution, enhanced depth coverage, and more accurate elastic wave speed estimates.more » « less
-
Abstract This study examines radial and axial displacement of the arterial wall under the influence of harmonics and wave reflection for the role of axial wall displacement in pulsatile wave propagation. The arterial wall is modeled as an initially-tensioned thin-walled orthotropic tube. In conjunction with three pulsatile parameters in blood flow, a free wave propagation analysis is conducted on the governing equations of the arterial wall and no-slip conditions at the blood-wall interface to obtain the frequency equation and pulsatile parameter expressions under different harmonics. The influence of wave reflection is then added to pulsatile parameter expressions. With the harmonic values of measured pulsatile pressure and blood flow rate at the ascending aorta in the literature, the waveforms of radial wall displacement, axial wall displacement, and wall shear stress are calculated under different orthotropicity and axial initial tension. The developed theory and calculated results indicate that (1) difference in waveform between blood flow rate, wall shear stress, and axial wall displacement is caused by harmonics, rather than wave reflection; (2) Axial wall displacement does not affect blood flow rate, radial wall displacement, and wall shear stress; (3) Besides wall shear stress, radial wall displacement gradient also contributes to axial wall displacement and its contribution is adjusted by axial initial tension; (4) different wave reflections only noticeably affect the maximum and minimum values of wall shear stress; and (5) The amplitude and waveform of axial wall displacement are predominantly dictated by axial elasticity and axial initial tension, respectively.more » « less
An official website of the United States government

