skip to main content


Title: Exceptional coupling in photonic anisotropic metamaterials for extremely low waveguide crosstalk

Electromagnetic coupling is ubiquitous in photonic systems and transfers optical signals from one device to the other, creating crosstalk between devices. While this allows the functionality of some photonic components such as couplers, it limits the integration density of photonic chips, and many approaches have been proposed to reduce the crosstalk. However, due to the wave nature of light, complete elimination of crosstalk between closely spaced, identical waveguides is believed to be impossible and has not been observed experimentally. Here we show an exceptional coupling that can completely suppresses the crosstalk utilizing highly anisotropic photonic metamaterials. The anisotropic dielectric perturbations in the metamaterial mutually cancel the couplings from different field components, resulting in an infinitely long coupling length. We demonstrate the extreme suppression of crosstalk via exceptional coupling on a silicon-on-insulator platform, which is compatible with a complementary metal-oxide-semiconductor process. The idea of exceptional coupling with anisotropic metamaterials can be applied to many other electromagnetic devices, and it could drastically increase the integration density of photonic chips.

 
more » « less
Award ID(s):
1930784
NSF-PAR ID:
10175996
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
7
Issue:
8
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 881
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electromagnetic coupling via an evanescent field or radiative wave is a primary characteristic of light, allowing optical signal/power transfer in a photonic circuit but limiting integration density. A leaky mode, which combines both evanescent field and radiative wave, causes stronger coupling and is thus considered not ideal for dense integration. Here we show that a leaky oscillation with anisotropic perturbation rather can achieve completely zero crosstalk realized by subwavelength grating (SWG) metamaterials. The oscillating fields in the SWGs enable coupling coefficients in each direction to counteract each other, resulting in completely zero crosstalk. We experimentally demonstrate such an extraordinarily low coupling between closely spaced identical leaky SWG waveguides, suppressing the crosstalk by ≈40 dB compared to conventional strip waveguides, corresponding to ≈100 times longer coupling length. This leaky-SWG suppresses the crosstalk of transverse–magnetic (TM) mode, which is challenging due to its low confinement, and marks a novel approach in electromagnetic coupling applicable to other spectral regimes and generic devices.

     
    more » « less
  2. Chemicals are best recognized by their unique wavelength specific optical absorption signatures in the molecular fingerprint region from λ=3-15μm. In recent years, photonic devices on chips are increasingly being used for chemical and biological sensing. Silicon has been the material of choice of the photonics industry over the last decade due to its easy integration with silicon electronics as well as its optical transparency in the near-infrared telecom wavelengths. Silicon is optically transparent from 1.1 μm to 8 μm with research from several groups in the mid-IR. However, intrinsic material losses in silicon exceed 2dB/cm after λ~7μm (~0.25dB/cm at λ=6μm). In addition to the waveguiding core, an appropriate transparent cladding is also required. Available core-cladding choices such as Ge-GaAs, GaAs-AlGaAs, InGaAs-InP would need suspended membrane photonic crystal waveguide geometries. However, since the most efficient QCLs demonstrated are in the InP platform, the choice of InGaAs-InP eliminates need for wafer bonding versus other choices. The InGaAs-InP material platform can also potentially cover the entire molecular fingerprint region from λ=3-15μm. At long wavelengths, in monolithic architectures integrating lasers, detectors and passive sensor photonic components without wafer bonding, compact passive photonic integrated circuit (PIC) components are desirable to reduce expensive epi material loss in passive PIC etched areas. In this paper, we consider miniaturization of waveguide bends and polarization rotators. We experimentally demonstrate suspended membrane subwavelength waveguide bends with compact sub-50μm bend radius and compact sub-300μm long polarization rotators in the InGaAs/InP material system. Measurements are centered at λ=6.15μm for sensing ammonia 
    more » « less
  3. Abstract

    Thermophotovoltaics (TPVs) is a promising energy conversion technology which can harvest wide‐spectrum thermal radiation. However, the manufacturing complexity and thermal instability of the nanophotonic absorber and emitter, which are key components of TPV devices, significantly limit their scalability and practical deployment. Here, tungsten–carbon nanotube (W‐CNT) composite photonic crystals (PhCs) exhibiting outstanding spectral and angular selectivity of photon absorbance and thermal emission are presented. The W‐CNT PhCs are fabricated by nanoscale holographic interferometry‐based patterning of a thin‐film catalyst, modulated chemical vapor deposition synthesis of high‐density CNT forest nanostructures, and infiltration of the CNT forests with tungsten via atomic layer deposition. Owing to their highly stable structure and composition, the W‐CNT PhCs exhibit negligible degradation of optical properties after annealing for 168 hours at 1273 K, which exceeds all previously reported high‐temperature PhCs. Using the measured spectral properties of the W‐CNT PhCs, the system efficiency of a GaSb‐based solar TPV (STPV) that surpasses the Shockley–Queisser efficiency limit at modest operating temperatures and input powers is numerically predicted. These findings encourage further practical development of STPVs, and this scalable fabrication method for composite nanostructures could find other applications in electromagnetic metamaterials.

     
    more » « less
  4.  
    more » « less
  5. Abstract

    The group III–V semiconductor photonic system is attractive to photonics engineers because it provides a complete set of photonic components. A plasmonic material that can be epitaxially integrated with the group III–V photonic system will potentially lead to many applications leveraging plasmonics and metamaterials. In this work, the shortest plasma wavelength ever reported in a III–V‐based material is demonstrated by epitaxially embedding ErAs into GaAs. This composite material acts as a tunable plasmonic material across the technologically important 2.68–6 µm infrared window. The growth window of this material is demonstrated to be much wider than other current heavily doped III–V plasmonic materials. Additionally, it is shown that the scattering rate can be reduced by increasing the growth temperature. The wide growth temperature range, designer plasmonic response, and the ease of epitaxial integration with other III–V semiconductor devices demonstrate the potential of ErAs:GaAs nanocomposites for the creation of a new type of metamaterial and other novel optoelectronic and nanophotonic applications.

     
    more » « less