skip to main content


Title: Reliable machine prognostic health management in the presence of missing data: Reliable machine prognostic health management in the presence of missing data
Award ID(s):
1809164
NSF-PAR ID:
10176045
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Concurrency and Computation: Practice and Experience
ISSN:
1532-0626
Page Range / eLocation ID:
e5762
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Achieving accurate remaining useful life (RUL) prediction for prognostic and health management (PHM) depends upon sufficient prior degradation apprehension of critical components within the system. However, such prior knowledge is not always readily available in practice. We alleviate this shortcoming by proposing a novel data-driven framework that is capable of providing accurate RUL prediction without the need for any prior failure threshold knowledge. Correlative and monotonic metrics are utilized to identify critical features throughout the degradation progress. Subsequently, we append one-hot health state indicators to extracted degrading features, which are utilized together as adversarial training data for a Long Short-Term Memory (LSTM) network-based model. Finally, we utilize a fully connected layer to project the LSTM outputs into the parameters of a Gaussian mixture model (GMM) in conjunction with a categorical distribution, from which the long-term degradation progress is sampled. We verify the performance of the proposed framework using aeroengine health data simulated by Modular Aero-Propulsion System Simulation (MAPSS), and the results demonstrate that significant performance improvement can be achieved for long-term degradation progress and RUL prediction tasks. 
    more » « less
  2. DC microgrids incorporate several converters for distributed energy resources connected to different passive and active loads. The complex interactions between the converters and components and their potential failures can significantly affect the grids' resilience and health; hence, they must be continually assessed and monitored. This paper presents a machine learning-assisted prognostic health monitoring (PHM) and diagnosis approach, enabling progressive interactions between the converters at multiple nodes to dynamically examine the grid's (or micro-grid's) health in real time. By measuring the resulting impedance at the power converters' terminals at various grid nodes, a neural network-based classifier helps detect the grid's health condition and identify the potential fault-prone zones, along with the type and location of the fault type in the grid topology. For a faulty grid, a Naive Bayes and a support vector machine (SVM)-based classifiers are used to locate and identify the faulty type, respectively. A separate neural network-based regression model predicts the source power delivered and the loads at different terminals in a healthy grid network. The proposed concepts are supported by detailed analysis and simulation results in a simple four-terminal DC microgrid topology and a standard IEEE 5 Bus system. 
    more » « less
  3. Missing data are ubiquitous in many domain such as healthcare. When these data entries are not missing completely at random, the (conditional) independence relations in the observed data may be different from those in the complete data generated by the underlying causal process.Consequently, simply applying existing causal discovery methods to the observed data may lead to wrong conclusions. In this paper, we aim at developing a causal discovery method to recover the underlying causal structure from observed data that are missing under different mechanisms, including missing completely at random (MCAR),missing at random (MAR), and missing not at random (MNAR). With missingness mechanisms represented by missingness graphs (m-graphs),we analyze conditions under which additional correction is needed to derive conditional independence/dependence relations in the complete data. Based on our analysis, we propose Miss-ing Value PC (MVPC), which extends the PC algorithm to incorporate additional corrections.Our proposed MVPC is shown in theory to give asymptotically correct results even on data that are MAR or MNAR. Experimental results on both synthetic data and real healthcare applications illustrate that the proposed algorithm is able to find correct causal relations even in the general case of MNAR. 
    more » « less
  4. null (Ed.)