skip to main content


This content will become publicly available on October 29, 2024

Title: Prognostic Health Monitoring of DC Microgrid with Fault Detection and Localization using Machine Learning Techniques
DC microgrids incorporate several converters for distributed energy resources connected to different passive and active loads. The complex interactions between the converters and components and their potential failures can significantly affect the grids' resilience and health; hence, they must be continually assessed and monitored. This paper presents a machine learning-assisted prognostic health monitoring (PHM) and diagnosis approach, enabling progressive interactions between the converters at multiple nodes to dynamically examine the grid's (or micro-grid's) health in real time. By measuring the resulting impedance at the power converters' terminals at various grid nodes, a neural network-based classifier helps detect the grid's health condition and identify the potential fault-prone zones, along with the type and location of the fault type in the grid topology. For a faulty grid, a Naive Bayes and a support vector machine (SVM)-based classifiers are used to locate and identify the faulty type, respectively. A separate neural network-based regression model predicts the source power delivered and the loads at different terminals in a healthy grid network. The proposed concepts are supported by detailed analysis and simulation results in a simple four-terminal DC microgrid topology and a standard IEEE 5 Bus system.  more » « less
Award ID(s):
2239966
NSF-PAR ID:
10494486
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1555 to 1560
Subject(s) / Keyword(s):
["Fault diagnosis\n,\nSupport vector machines\n,\nImpedance measurement\n,\nNetwork topology\n,\nSimulation\n,\nMicrogrids\n,\nTopology"]
Format(s):
Medium: X
Location:
Nashville, TN, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Inertia from rotating masses of generators in power systems influence the instantaneous frequency change when an imbalance between electrical and mechanical power occurs. Renewable energy sources (RES), such as solar and wind power, are connected to the grid via electronic converters. RES connected through converters affect the system's inertia by decreasing it and making it time-varying. This new setting challenges the ability of current control schemes to maintain frequency stability. Proposing adequate controllers for this new paradigm is key for the performance and stability of future power grids. The contribution of this paper is a framework to learn sparse time-invariant frequency controllers in a power system network with a time-varying evolution of rotational inertia. We model power dynamics using a Switched-Affine hybrid system to consider different modes corresponding to different inertia coefficients. We design a controller that uses as features, i.e. input, the systems states. In other words, we design a control proportional to the angles and frequencies. We include virtual inertia in the controllers to ensure stability. One of our findings is that it is possible to restrict communication between the nodes by reducing the number of features in the controller (from 22 to 10 in our case study) without disrupting performance and stability. Furthermore, once communication between nodes has reached a threshold, increasing it beyond this threshold does not improve performance or stability. We find a correlation between optimal feature selection in sparse controllers and the topology of the network. 
    more » « less
  2. The increasing importance of power electronic converters in supplying electrical energy to utility grids places a higher priority to detect and protect against fault conditions. Fault detection and isolation are particularly important for inverters that provide black-start recovery for microgrids since these converters provide the energy source for restoration after a power outage. This paper presents a new fault detection and location method for Cascaded H-Bridge (CHB) multilevel inverters. The new fault detection method is based on monitoring the output voltage of each cell and output current directions along with each switch’s state. By monitoring each cell’s output voltage and current direction, the faulty cell can be detected and isolated. After the faulty cell is detected, the faulty switch can be located by comparing the current direction with the switching states. This technique is implemented with Level-Shifted Pulse Width Modulation (LS-PWM) in order to maintain acceptable total harmonic distortion (THD) levels at the converter. The proposed method can be implemented for a CHB with any number of cells, can operate with nonlinear loads, and offers very fast detection times. Simulation and experimental results verify the performance of this method. 
    more » « less
  3. AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational efficiency when multiple types of power generators and loads coexist at the power distribution level. However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a critical concern, especially with the increasing adoption of power electronic devices and various types of power generation. In this manuscript, we investigate the modeling of AC/DC hybrid microgrids with grid-forming and grid-following power converters. We propose a rapid simulation technique to reduce the simulation runtime with acceptable errors. Moreover, we discuss the stability of hybrid microgrids with different types of faults and power mismatches. In particular, we examine the voltage nadir to evaluate the transient stability of the hybrid microgrid. We also design a droop controller to regulate the power flow and alleviate voltage instability. During our study, we establish a Simulink-based simulation platform for operational analysis of the microgrid. 
    more » « less
  4. In this work, we investigate grid-forming control for power systems containing three-phase and single-phase converters connected to unbalanced distribution and transmission networks, investigate self-balancing between single-phase converters, and propose a novel balancing feedback for grid-forming control that explicitly allows to trade-off unbalances in voltage and power. We develop a quasi-steady-state power network model that allows to analyze the interactions between three-phase and single-phase power converters across transmission, distribution, and standard transformer interconnections. We first investigate conditions under which this general network admits a well-posed kron-reduced quasi-steady-state network model. Our main contribution leverages this reduced-order model to develop analytical conditions for stability of the overall network with grid-forming three-phase and single-phase converters connected through standard transformer interconnections. Specifically, we provide conditions on the network topology under which (i) single-phase converters autonomously self-synchronize to a phase-balanced operating point and (ii) single-phase converters phase-balance through synchronization with three-phase converters. Moreover, we establish that the conditions can be relaxed if a phase-balancing feedback control is used. Finally, case studies combining detailed models of transmission systems (i.e., IEEE 9-bus) and distribution systems (i.e., IEEE 13-bus) are used to illustrate the results for (i) a power system containing a mix of transmission and distribution connected converters and, (ii) a power system solely using distribution-connected converters at the grid edge. 
    more » « less
  5. Among current priorities of the power system analysis is the development of metrics and computational tools for the resilience analysis during catastrophic events. New methods and tools are required for such an analysis and they have to be validated prior application to real systems. However, benchmark problems are not readily available due to the analysis novelty. The current paper presents a case based on the IEEE 14-bus system for this purpose. The grid is simplified to a graph with nodes representing generators, loads, and buses. Power inputs are imported from real-time simulations of the IEEE 14-bus system. Outcomes of all possible combinations of failed elements are presented in terms of probabilities for the grid to survive, partially survive, or fail. Only the power grid's ability to withstand adverse events (survivability) is analyzed. The grid's recoverability, the other part of the resilience analysis, is not considered. 
    more » « less