TGF-β is a prominent anabolic signaling molecule associated with synovial joint health. Recent work has uncovered mechanochemical mechanisms that activate the latent form of TGF-β (LTGF-β) in the synovial joint-synovial fluid (SF) shearing or cartilage compression-pointing to mechanobiological phenomena, whereby enhanced TGF-β activity occurs during joint stimulation. Here, we implement computational and experimental models to better understand the role of mechanochemical-activated TGF-β (aTGF-β) in regulating the functional biosynthetic activities of synovial joint tissues. Reaction-diffusion models describe the pronounced role of extracellular chemical reactions-load-induced activation, reversible ECM-binding, and cell-mediated internalization-in modulating the spatiotemporal distribution of aTGF-β in joint tissues. Of note, aTGF-β from SF shearing predominantly acts on cells in peripheral tissue regions (superficial zone [SZ] chondrocytes and synoviocytes) and aTGF-β from cartilage compression acts on chondrocytes through all cartilage layers. Further, ECM reversible binding sites in cartilage act to modulate the temporal delivery of aTGF-β to cells, creating a dynamic where short durations of joint activity give rise to extended periods of aTGF-β exposure at moderated doses. Ex vivo tissue models were subsequently utilized to characterize the influence of physiologic aTGF-β activity regimens in regulating functional biosynthetic activities. Physiologic exposure regimens of aTGF-β in SF induce strong 4-fold to 9-fold enhancements in the secretion rate of the synovial biolubricant, PRG4, from SZ cartilage and synovium explants. Further, aTGF-β inhibition in cartilage over 1-month culture leads to a pronounced loss of GAG content (30-35% decrease) and tissue softening (60-65% EY reduction). Overall, this work advances a novel perspective on the regulation of TGF-β in the synovial joint and its role in maintaining synovial joint health.
more »
« less
Novel quantification of mechanical load induced latent TGF-beta activation in articular cartilage
Measuring LTGF-beta activation in live tissues in situ is a major challenge due to the short half-life of activated TGF-beta in cartilage (due to rapid receptor internalization/degradation). As such, activation assessments typically require analysis of downstream events. However, assessments of intracellular TGF-beta signaling molecules (Smad2/3 phosphorylation) yield mostly qualitative measures and reporter cell assays are not compatible with intact cartilage tissues. Alternatively, in the current project, we proposed quantifying LTGF-beta activation in situ through a novel assay that capitalizes on TGF-beta’s robust autoinduction behavior; active TGF-beta activity induces a predictable increase in synthesis of soluble LTGF-beta. The dominant fraction of newly synthesized LTGF-beta is secreted from the tissue (not retained in ECM) and stable. Accordingly, measurements of LTGF-beta secretion into culture medium allows for quantifications of TGF-beta activity in cartilage. In order to confirm that LTGF-beta secretion enhancements result from TGF-beta activity (and not other load-initiated signaling cascades), a control group can readily be utilized, consisting of TGF-beta activity inhibition from a TGF-beta-receptor specific kinase inhibitor. Using this platform, we performed the first-ever measurement of the activity of TGF-beta in cartilage explants from load-induced activation. Results demonstrate that LTGF-beta secretion rates do indeed increase with cartilage mechanical loading. Upon exposure to a TGF-beta inhibitor, LTGF-beta secretion rates return to basal control levels, thus confirming that LTGF-beta secretion enhancements can be predominantly attributed to TGF-beta activity in the tissue. Upon standard curve conversion, autoinduction assay results demonstrate that mechanical load-induced activation of ECM-bound LTGF-beta gives rise to ~0.15ng/mL of TGF-beta activity in cartilage. Importantly, this measure represents the first quantitative assessment of TGF-beta activity in articular cartilage. While these levels represent the activation of only a small fraction of the total LTGF-beta stores in the cartilage ECM (~300ng/mL), they are indeed capable of giving rise to considerable chondrocyte biosynthesis enhancements in the tissue. As such, these measurements support the mechanobiological role of load-induced LTGF-beta activation in maintaining articular cartilage integrity. The assay platform advanced in this study sets the foundation for considerable advances in our understanding of the mechanistic details and physiologic importance of load-induced LTGF-beta activation in cartilage. In the future, we plan to use this quantitative platform to assess: 1) the influence of varying loading regimens on LTGF-beta activation rates (e.g., physiologic exercise, elevated stresses, high-impact trauma), and 2) changes to load-induced LTGF-beta activation with aging or joint degeneration. An abstract on this work was presented at the 2020 ASME SB3C Conference (virtual meeting) and a full-length manuscript is currently in preparation.
more »
« less
- Award ID(s):
- 1906469
- PAR ID:
- 10176316
- Date Published:
- Journal Name:
- Summer Biomechanics, Bioengineering, and Biotransport Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Osteoarthritis (OA), a chronic and degenerative joint disease, remains a challenge in treatment due to the lack of disease-modifying therapies. As a promising therapeutic agent, adipose-derived stem cells (ADSCs) have an effective anti-inflammatory and chondroprotective paracrine effect that can be enhanced by genetic modification. Unfortunately, direct cell delivery without matrix support often results in poor viability of therapeutic cells. Herein, a hydrogel implant approach that enabled intra-articular delivery of gene-engineered ADSCs was developed for improved therapeutic outcomes in a surgically induced rat OA model. An injectable extracellular matrix (ECM)-mimicking hydrogel was prepared as the carrier for cell delivery, providing a favorable microenvironment for ADSC spreading and proliferation. The ECM-mimicking hydrogel could reduce cell death during and post injection. Additionally, ADSCs were genetically modified to overexpress transforming growth factor-β1 (TGF-β1), one of the paracrine factors that exert an anti-inflammatory and pro-anabolic effect. The gene-engineered ADSCs overexpressing TGF-β1 (T-ADSCs) had an enhanced paracrine effect on OA-like chondrocytes, which effectively decreased the expression of tumor necrosis factor-alpha and increased the expression of collagen II and aggrecan. In a surgically induced rat OA model, intra-articular injection of the T-ADSC-loaded hydrogel markedly reduced cartilage degeneration, joint inflammation, and the loss of the subchondral bone. Taken together, this study provides a potential biomaterial strategy for enhanced OA treatment by delivering the gene-engineered ADSCs within an ECM-mimicking hydrogel.more » « less
-
Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulat- ing bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we tissue engineering.more » « less
-
Abstract Articular cartilage (AC) is a load-bearing tissue that covers long bones in synovial joints. The biphasic/poroelastic mechanical properties of AC help it to protect joints by distributing loads, absorbing impact forces, and reducing friction. Unfortunately, alterations in these mechanical properties adversely impact cartilage function and precede joint degeneration in the form of osteoarthritis (OA). Thus, understanding what factors regulate the poroelastic mechanical properties of cartilage is of great scientific and clinical interest. Transgenic mouse models provide a valuable platform to delineate how specific genes contribute to cartilage mechanical properties. However, the poroelastic mechanical properties of murine articular cartilage are challenging to measure due to its small size (thickness ∼ 50 microns). In the current study, our objective was to test whether the poroelastic mechanical properties of murine articular cartilage can be determined based solely on time-dependent cell death measurements under constant loading conditions. We hypothesized that in murine articular cartilage subjected to constant, sub-impact loading from an incongruent surface, cell death area and tissue strain are closely correlated. We further hypothesized that the relationship between cell death area and tissue strain can be used—in combination with inverse finite element modeling—to compute poroelastic mechanical properties. To test these hypotheses, murine cartilage-on-bone explants from different anatomical locations were subjected to constant loading conditions by an incongruent surface in a custom device. Cell death area increased over time and scaled linearly with strain, which rose in magnitude over time due to poroelastic creep. Thus, we were able to infer tissue strain from cell death area measurements. Moreover, using tissue strain values inferred from cell death area measurements, we applied an inverse finite element modeling procedure to compute poroelastic material properties and acquired data consistent with previous studies. Collectively, our findings demonstrate in the key role poroelastic creep plays in mediating cell survival in mechanically loaded cartilage and verify that cell death area can be used as a surrogate measure of tissue strain that enables determination of murine cartilage mechanical properties.more » « less
-
ABSTRACT The articular cartilage extracellular matrix (ECM) is a complex network of biomolecules that includes fibronectin (FN). FN acts as an extracellular glue, controlling the assembly of other macromolecular constituents to the ECM. However, how FN participates in the binding and retention of synovial fluid components, the natural lubricant of articulated joints, to form a wear-protecting and lubricating film has not been established. This study reports on the role of FN and its molecular conformation in mediating macromolecular assembly of synovial fluid ad-layers. FN films as precursor films on functionalized surfaces, a model of FN’s articular cartilage surface, adsorbed and retained different amounts of synovial fluid (SF). FN conformational changes were induced by depositing FN at pH 7 (extended state) or at pH 4 (unfolded state) on self-assembled monolayers on gold-coated quartz crystals, followed by adsorption of diluted SF (25%) onto FN precursor films. Mass density, thin film compliance, surface morphologies, and adsorbed FN films’ secondary and tertiary structures reveal pH-induced differences. FN films deposited at pH 4 were thicker, more rigid, showed a more homogeneous morphology, and had alteredα-helix andβ-sheet content, compared to FN films deposited at pH 7. FN precursor films deposited at pH 7 adsorbed and retained more synovial fluid than those at pH 4, revealing the importance of FN conformation at the articular cartilage surface to bind and maintain a thin lubricating and wear protective layer of synovial fluid constituents. This knowledge will enable a better understanding of the molecular regulation of articular cartilage-SF interface homeostasis and joint pathophysiology and identify molecular interactions and synergies between the articular cartilage ECM and SF to reveal the complexity of joint biotribology.more » « less
An official website of the United States government

