skip to main content

Title: Placing the AD 2014–2016 ‘protracted’ El Niño episode into a long-term context
Although extended or ‘protracted’ El Niño and La Niña episodes were first suggested nearly 20 years ago, they have not received the attention of other ‘flavours’ of the El Niño–Southern Oscillation (ENSO) or low-frequency ‘ENSO-like’ phenomena. In this study, instrumental variables and palaeoclimatic reconstructions are used to investigate the most recent ‘protracted’ El Niño episode in 2014–2016, and place it into a longer historical context. Although just reaching the threshold for such an episode, the 2014–2016 ‘protracted’ El Niño had very severe societal, agricultural, environmental and ecological impacts, particularly in western Pacific regions like eastern Australia. We show that although ‘protracted’ ENSO episodes of either phase cause similar, near-global modulations of weather and climate as during more ‘classical’ events, impacts associated with ‘protracted’ episodes last longer, with strong influences in eastern Australia. The latter is a response to the dominance of Niño 4 sea surface temperature (SST) and associated atmospheric teleconnection anomalies during ‘protracted’ ENSO episodes. Importantly, while Niño 4 SST anomalies recorded during the austral summer of 2016 were the highest values on record, an analysis of long-term palaeoclimate records indicates that there may have been episodes of greater magnitude and duration than seen in instrumental observations. This suggests more » that shorter instrumental observations may underestimate the risks of possible future ENSO extremes compared with those observed from multi-century palaeoclimate records. Improved knowledge of ENSO and the potential to forecast ‘protracted’ episodes would be of immense practical benefit to communities affected by the severe impacts of ENSO extremes. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
The Holocene
Page Range or eLocation-ID:
90 to 105
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although the 1997/98 and 2015/16 El Niño events are considered to be the strongest on record, their subsequent La Niña events exhibited contrasted evolutions. In this study, we demonstrate that the extremely strong period of Tropical Instability Waves (TIWs) at the beginning of boreal summer of 2016 played an important role in hindering the subsequent La Niña’s development by transporting extra off-equatorial heat into the Pacific cold tongue. By comparing the TIWs contribution based on an oceanic mixed-layer heat budget analysis for the 1998 and 2016 episodes, we establish that TIW-induced nonlinear dynamical heating (NDH) is a significant contributor to the El Niño-Southern Oscillation (ENSO) phase transition in 2016. TIW-induced NDH contributed to around 0.4°C per month warming during the early boreal summer (May-June) following the 2015/16 El Niño’s peak, which is found to be an essential inhibiting factor that prevented the subsequent La Niña’s growth. A time-mean eddy kinetic energy analysis reveals that anomalous TIWs during 2016 mainly gained their energy from the baroclinic instability conversion due to a strong SST warming in the northeastern off-equatorial Pacific that promoted an increased meridional SST gradient. This highlights the importance of accurately reproducing TIW activity in ENSO simulation and themore »benefit of off-equatorial SST anomalies in the eastern Pacific as an independent precursor for ENSO predictions.« less
  2. Abstract

    Rainfall and river levels in the Amazon are associated with significant precipitation anomalies of opposite sign in temperate North and South America, which is the dominant mode of precipitation variability in the Americas that often arises during extremes of the El Niño/Southern Oscillation (ENSO). This co-variability of precipitation extremes across the Americas is imprinted on tree growth and is detected when new tree-ring chronologies from the eastern equatorial Amazon are compared with hundreds of moisture-sensitive tree-ring chronologies in mid-latitude North and South America from 1759 to 2016. Pan-American co-variability exists even though the seasonality of precipitation and tree growth only partially overlaps between the Amazon and mid-latitudes because ENSO forcing of climate can persist for multiple seasons and can orchestrate a coherent response, even where the growing seasons are not fully synchronized. The tree-ring data indicate that the El Niño influence on inter-hemispheric precipitation and tree growth extremes has been strong and stable over the past 258-years, but the La Niña influence has been subject to large multi-decadal changes. These changes have implications for the dynamics and forecasting of hydroclimatic variability over the Americas and are supported by analyses of the available instrumental data and selected climate model simulations.

  3. El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the westernmore »Pacific, suggestive of ocean–atmosphere coupling.

    « less
  4. Abstract

    Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 Elmore »Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.

    « less
  5. South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisturemore »transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions.« less