skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Damage assessment of wood frame shear walls subjected to lateral wind load and windborne debris impact
A number of studies have been performed to understand the lateral load carrying capacity of wood frame shear walls. The existing studies, however, have been primarily focused on the intact shear walls, disregarding the possibility of capacity loss due to prior extreme loading events. During windstorms, in particular, windborne debris is the leading cause of damage and destruction. While the impact force induced by windborne debris can directly damage a shear wall, the consequences can become disastrous, as the prior damage adversely affects the in-plane lateral load carrying capacity of the shear wall. This critical aspect motivated the current study to investigate the impact and post-impact performance of wood frame shear walls. For this purpose, a high-fidelity computational framework capable of characterizing both types of damage is developed. Further to providing an in-depth understanding of the process of damage formation and propagation, this study examines how a range of impact scenarios and wall design factors influence the extent of damage that the wood frame shear walls experience in a windstorm. The outcome of this study is then employed to introduce a capacity loss index for the multi-hazard design and assessment of wood frame (and other similar) shear walls in the regions prone to severe windstorms.  more » « less
Award ID(s):
1827774 1826356
PAR ID:
10176377
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of wind engineering and industrial aerodynamics
Volume:
198
ISSN:
0167-6105
Page Range / eLocation ID:
104091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural Insulated Panels (SIPs), which consist of a composite of an insulating polymer foam sandwiched between two layers of structural skins, are widely used in residential and commercial buildings. Such panels, in the regions prone to hurricanes and tornadoes, are often exposed to the risk of windborne debris impact. Despite the consequences associated with damage to SIPs, the studies on their perforation resistance and design variables have been rather limited. To address this gap, the current study develops a computational framework to assess the vulnerability of the SIPs of various configurations subjected to a range of windborne debris impact scenarios. For this purpose, impact simulations are conducted to quantify the response and evaluate the extent of damage to the SIPs. The study is further extended to evaluate the effect of various structural details and material properties on the perforation resistance of the SIPs. Based on the simulation results, a set of vulnerability curves are developed for the first time to capture the risk of failure of the SIPs under the windborne debris hazard. This is expected to improve the design of this important category of wall panels, especially to ensure their safety and performance during severe windstorms. 
    more » « less
  2. This paper presents an experimental evaluation of a new interface configuration for unbonded post-tensioned shear (UPTS) walls. In the proposed configuration, the wall-base interface is shaped in a circular profile. This circular profile presents a major difference from the currently used flat profile at the wall-base interface of rocking UPTS walls. During lateral response, this circular profile induces the wall to predominantly rotate as a rigid body about a fixed point without uplift, and the system dissipates energy through the contact friction that develops at the wall-base interface. This rigid body motion resembles that of a pendulum, thereby designating this system as a pendulum UPTS wall. At this stage, research has demonstrated the many advantages of this system by proof-of-concept testing of a pendulum light-frame wood (LiF) UPTS wall specimen under increasing levels of post-tensioning force. Compared with rocking UPTS walls, experimental results demonstrate that besides performing damage-free when subjected to high drift levels, the proof-of-concept pendulum LiF-UPTS wall offers the following promising outcomes: (1) insignificant to no wall uplift, (2) insignificant to no wall base shear sliding, (3) reduced stress concentrations at the wall toes because contact stresses are distributed along the wall-base interface over a larger region, (4) nearly constant post-tensioning forces under high drift levels, which limits post-tensioning losses due to yielding of prestressing bars or tendons, (5) increase in energy dissipation capacity of the system through friction, and (6) decrease in the damping reduction factor and thus, reduction in the lateral displacement and force demands in pendulum LiF-UPTS walls. These research outcomes are likely to translate positively to other shear wall types, namely reinforced concrete (RC) precast pendulum UPTS walls. 
    more » « less
  3. Past failure risk analyses of wind-impacted wood-frame structural load paths have tended to consider simplified resistance models that account for a few key load path connections, in which connection capacity distributions are generally based on benchmark experimental results. However, recent post-storm reconnaissance studies have demonstrated that connections in the load path of light wood-frame structures are themselves composed of multiple elements with many configurations and possible failure modes. This study presents a flexible approach for modeling wind uplift resistance in wood-frame load paths that includes a more exhaustive set of potential failure points yet is computationally efficient and readily adaptable to various load paths composed of different assemblages of structural members and connections. In this framework, ultimate capacities of connections and wood members are either based on design equations provided in the National Design Specification for Wood Construction or another applicable standard or computed from a comparable mechanics-based model. Analytical capacity estimates for roof sheathing, roof-to-wall connections, and wall-to-slab-foundation connections accord well with the range of published experimental results for these connections. Capacities of connections that act in parallel are summed to transform the load path into an analogous load chain of series components. System-level wind uplift resistance, defined by the weakest component in series, is evaluated by Monte Carlo simulation. By providing a more complete description of resistance than previous simplified models have done while avoiding the expense of a detailed finite-element or other solid mechanics model, the method proposed here holds promise as a rapid, consistent, and accurate way to quantify wind resistance in any arbitrary wood-frame load path, with applications including insurance risk analysis, hybrid data science frameworks utilizing post-storm reconnaissance data, and estimation of hazard intensity from structural damage observations. 
    more » « less
  4. This paper presents an experimental study on the multidirectional cyclic lateral-load response of post-tensioned self-centering (SC) cross-laminated timber (CLT) shear walls. SC-CLT shear wall damage states are introduced and qualitatively defined in terms of the repairs needed to restore the lateral-load response of the SC-CLT wall. A comparison between SC-CLT wall damage states under unidirectional (in-plane) and multidirectional (in-plane and out-of-plane) lateral loading is presented. The experimental results show that the initiation of SC-CLT wall damage occurs at smaller story drifts under multidirectional loading compared to unidirectional loading. Engineering demand parameters (EDPs) are used to quantify the SC-CLT wall damage states. Uncertainty in the EDP value when a damage state occurs is considered and quantified. Using the experimental results, component (i.e., a CLT wall panel corner) and system (i.e., an entire SC-CLT wall) fragility functions are developed and presented. 
    more » « less
  5. Summary This paper presents a shake‐table test study to investigate the displacement capacity of shear‐dominated reinforced masonry wall systems and the influence of wall flanges and planar walls perpendicular to the direction of shaking (out‐of‐plane walls) on the seismic performance of a wall system. Two full‐scale, single‐story, fully grouted, reinforced masonry wall specimens were tested to the verge of collapse. Each specimen had two T‐walls as the seismic force‐resisting elements and a stiff roof diaphragm. The second specimen had six additional planar walls perpendicular to the direction of shaking. The two specimens reached maximum roof drift ratios of 17% and 13%, without collapsing. The high displacement capacities can be largely attributed to the presence of wall flanges and, for the second specimen, also the out‐of‐plane walls, which provided an alternative load path to carry the gravity load when the webs of the T‐walls had been severely damaged. The second specimen developed a higher lateral resistance than the first owing to the additional axial compression exerted on the T‐walls by the out‐of‐plane walls when the former rocked. The shear resistance of the T‐walls evaluated with the design code formula matches the test result well when this additional axial compression is taken into account. However, it must be understood that the beneficial influence of the wall flanges depends on the magnitude of the gravity load because of the P‐Δ effect and the severity of damage induced in the wall flanges when the wall system is subjected to bidirectional ground motions. 
    more » « less