skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probabilistic wind uplift resistance framework for the relative evaluation of wood-frame load paths
Past failure risk analyses of wind-impacted wood-frame structural load paths have tended to consider simplified resistance models that account for a few key load path connections, in which connection capacity distributions are generally based on benchmark experimental results. However, recent post-storm reconnaissance studies have demonstrated that connections in the load path of light wood-frame structures are themselves composed of multiple elements with many configurations and possible failure modes. This study presents a flexible approach for modeling wind uplift resistance in wood-frame load paths that includes a more exhaustive set of potential failure points yet is computationally efficient and readily adaptable to various load paths composed of different assemblages of structural members and connections. In this framework, ultimate capacities of connections and wood members are either based on design equations provided in the National Design Specification for Wood Construction or another applicable standard or computed from a comparable mechanics-based model. Analytical capacity estimates for roof sheathing, roof-to-wall connections, and wall-to-slab-foundation connections accord well with the range of published experimental results for these connections. Capacities of connections that act in parallel are summed to transform the load path into an analogous load chain of series components. System-level wind uplift resistance, defined by the weakest component in series, is evaluated by Monte Carlo simulation. By providing a more complete description of resistance than previous simplified models have done while avoiding the expense of a detailed finite-element or other solid mechanics model, the method proposed here holds promise as a rapid, consistent, and accurate way to quantify wind resistance in any arbitrary wood-frame load path, with applications including insurance risk analysis, hybrid data science frameworks utilizing post-storm reconnaissance data, and estimation of hazard intensity from structural damage observations.  more » « less
Award ID(s):
1944149
PAR ID:
10535019
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Engineering Structures
Volume:
298
Issue:
C
ISSN:
0141-0296
Page Range / eLocation ID:
116984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents a framework for global sensitivity analysis of wind uplift resistance in wood-frame residential structures. The vertical load path is modeled probabilistically as an assemblage of connections, with resistance distributions based on connection design capacity and cumulative dead load. An established sensitivity analysis approach is applied to the load path resistance model to evaluate the influence of the input parameter set on the system resistance, which is taken as the resistance of the weakest connection in series. A preliminary analysis illustrates the potential of the framework as a useful tool for assessing the relative importance of structural attributes for wind resistance, adaptable to any arbitrary vertical load path and parameter set. The framework also facilitates the evaluation of the relative vulnerability of different load path configurations from structure to structure. 
    more » « less
  2. This study presents a framework for global sensitivity analysis of wind uplift resistance in wood-frame residential structures. The vertical load path is modeled probabilistically as an assemblage of connections, with resistance distributions based on connection design capacity and cumulative dead load. An established sensitivity analysis approach is applied to the load path resistance model to evaluate the influence of the input parameter set on the system resistance, which is taken as the resistance of the weakest connection in series. A preliminary analysis illustrates the potential of the framework as a useful tool for assessing the relative importance of structural attributes for wind resistance, adaptable to any arbitrary vertical load path and parameter set. The framework also facilitates the evaluation of the relative vulnerability of different load path configurations from structure to structure. 
    more » « less
  3. A framework is presented for evaluating the sensitivity behavior of parameters in a structural load path with respect to wind hazard analytical fragilities. A preliminary analysis applies the framework to a vertical light wood-frame load path. A variance-based sensitivity analysis method is employed to compute first-order sensitivity indices of all input parameters on the basis of load path system resistance, fragility median, and fragility standard deviation. The results indicate that a sensitivity analysis predicated on fragility median provides a reasonable description of load path parameter influence and may serve as a useful complementary tool alongside traditional load path fragility approaches. The framework can be useful for identifying which fragility model parameters are most essential out of a broader suite of possible parameters, and for offering guidance to reconnaissance efforts for focusing on the most influential perishable data to capture following extreme hazard events. 
    more » « less
  4. This study assesses the wind performance of various housing typologies representing informal construction practices in Puerto Rico to suggest modifications to enhance housing resilience in hurricanes. Based on fieldwork and interviews, the study defined four base housing typologies and possible variations in design and construction details. Each house was assessed using performance-based static wind analysis of potentially critical components. The results show that the initial governing failure mode in all base house typologies considered is roof panel loss due to tear-through at the fasteners, with subsequent governing failures being panel loss due to failures at the purlin-to-truss connections and failures of the truss-to-wall connections. In-plane wall failures and masonry uplift failures were both found to occur at much higher wind speeds than roof failures. To improve the hurricane performance, several feasible modifications are suggested, including installing hurricane straps at both the truss-to-wall and the purlin-to-truss connections, as well as improving the panel-fastener interface. In the construction of new roofs, this study found that using reduced spacing between roof members, hip roofs instead of gable roofs, and higher roof slopes leads to improved performance. These recommendations can make houses built through informal construction processes safer and more resilient to hurricanes as a form of climate adaptation.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less
  5. A number of studies have been performed to understand the lateral load carrying capacity of wood frame shear walls. The existing studies, however, have been primarily focused on the intact shear walls, disregarding the possibility of capacity loss due to prior extreme loading events. During windstorms, in particular, windborne debris is the leading cause of damage and destruction. While the impact force induced by windborne debris can directly damage a shear wall, the consequences can become disastrous, as the prior damage adversely affects the in-plane lateral load carrying capacity of the shear wall. This critical aspect motivated the current study to investigate the impact and post-impact performance of wood frame shear walls. For this purpose, a high-fidelity computational framework capable of characterizing both types of damage is developed. Further to providing an in-depth understanding of the process of damage formation and propagation, this study examines how a range of impact scenarios and wall design factors influence the extent of damage that the wood frame shear walls experience in a windstorm. The outcome of this study is then employed to introduce a capacity loss index for the multi-hazard design and assessment of wood frame (and other similar) shear walls in the regions prone to severe windstorms. 
    more » « less