skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Encoding robust representation for graph generation
Generative networks have made it possible to generate meaningful signals such as images and texts from simple noise. Recently, generative methods based on GAN and VAE were developed for graphs and graph signals. However, the mathematical properties of these methods are unclear, and training good generative models is difficult. This work proposes a graph generation model that uses a recent adaptation of Mallat's scattering transform to graphs. The proposed model is naturally composed of an encoder and a decoder. The encoder is a Gaussianized graph scattering transform, which is robust to signal and graph manipulation. The decoder is a simple fully connected network that is adapted to specific tasks, such as link prediction, signal generation on graphs and full graph and signal generation. The training of our proposed system is efficient since it is only applied to the decoder and the hardware requirements are moderate. Numerical results demonstrate state-of-the-art performance of the proposed system for both link prediction and graph and signal generation.  more » « less
Award ID(s):
1830418
NSF-PAR ID:
10176533
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Joint Conference on Neural Networks (IJCNN)
Page Range / eLocation ID:
1-9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semi-implicit graph variational auto-encoder (SIG-VAE) is proposed to expand the flexibility of variational graph auto-encoders (VGAE) to model graph data. SIG-VAE employs a hierarchical variational framework to enable neighboring node sharing for better generative modeling of graph dependency structure, together with a Bernoulli-Poisson link decoder. Not only does this hierarchical construction provide a more flexible generative graph model to better capture real-world graph properties, but also does SIG-VAE naturally lead to semi-implicit hierarchical variational inference that allows faithful modeling of implicit posteriors of given graph data, which may exhibit heavy tails, multiple modes, skewness, and rich dependency structures. SIG-VAE integrates a carefully designed generative model, well suited to model real-world sparse graphs, and a sophisticated variational inference network, which propagates the graph structural information and distribution uncertainty to capture complex posteriors. SIG-VAE clearly outperforms a simple combination of VGAE with variational inference, including semi-implicit variational inference~(SIVI) or normalizing flow (NF), which does not propagate uncertainty in its inference network, and provides more interpretable latent representations than VGAE does. Extensive experiments with a variety of graph data show that SIG-VAE significantly outperforms state-of-the-art methods on several different graph analytic tasks. 
    more » « less
  2. Semi-implicit graph variational auto-encoder (SIG-VAE) is proposed to expand the flexibility of variational graph auto-encoders (VGAE) to model graph data. SIG-VAE employs a hierarchical variational framework to enable neighboring node sharing for better generative modeling of graph dependency structure, together with a Bernoulli-Poisson link decoder. Not only does this hierarchical construction provide a more flexible generative graph model to better capture real-world graph properties, but also does SIG-VAE naturally lead to semi-implicit hierarchical variational inference that allows faithful modeling of implicit posteriors of given graph data, which may exhibit heavy tails, multiple modes, skewness, and rich dependency structures. SIG-VAE integrates a carefully designed generative model, well suited to model real-world sparse graphs, and a sophisticated variational inference network, which propagates the graph structural information and distribution uncertainty to capture complex posteriors. SIG-VAE clearly outperforms a simple combination of VGAE with variational inference, including semi-implicit variational inference~(SIVI) or normalizing flow (NF), which does not propagate uncertainty in its inference network, and provides more interpretable latent representations than VGAE does. Extensive experiments with a variety of graph data show that SIG-VAE significantly outperforms state-of-the-art methods on several different graph analytic tasks. 
    more » « less
  3. Diffusion-based graph generative models are effective in generating high-quality small graphs. However, it is hard to scale them to large graphs that contain thousands of nodes. In this work, we propose EDGE, a new diffusion-based graph generative model that addresses generative tasks for large graphs. The model is developed by reversing a discrete diffusion process that randomly removes edges until obtaining an empty graph. It leverages graph sparsity in the diffusion process to improve computational efficiency. In particular, EDGE only focuses on a small portion of graph nodes and only adds edges between these nodes. Without compromising modeling ability, it makes much fewer edge predictions than previous diffusion-based generative models. Furthermore, EDGE can explicitly model the node degrees of training graphs and then gain performance improvement in capturing graph statistics. The empirical study shows that EDGE is much more efficient than competing methods and can generate large graphs with thousands of nodes. It also outperforms baseline models in generation quality: graphs generated by the proposed model have graph statistics more similar to those of training graphs. 
    more » « less
  4. Diffusion-based graph generative models are effective in generating high-quality small graphs. However, it is hard to scale them to large graphs that contain thousands of nodes. In this work, we propose EDGE, a new diffusion-based graph generative model that addresses generative tasks for large graphs. The model is developed by reversing a discrete diffusion process that randomly removes edges until obtaining an empty graph. It leverages graph sparsity in the diffusion process to improve computational efficiency. In particular, EDGE only focuses on a small portion of graph nodes and only adds edges between these nodes. Without compromising modeling ability, it makes much fewer edge predictions than previous diffusion-based generative models. Furthermore, EDGE can explicitly model the node degrees of training graphs and then gain performance improvement in capturing graph statistics. The empirical study shows that EDGE is much more efficient than competing methods and can generate large graphs with thousands of nodes. It also outperforms baseline models in generation quality: graphs generated by the proposed model have graph statistics more similar to those of training graphs. 
    more » « less
  5. In this paper, the relationship between functional and structural brain networks is investigated by training a graph encoder-decoder system to learn the mapping from brain structural connectivity (SC) to functional connectivity (FC). Our work leverages a graph convolutional network (GCN) model in the encoder which integrates both nodal attributes and the network topology information to generate new graph representations in lower dimensions. Using brain SC graphs as inputs, the novel GCN-based encoder-decoder system manages to account for both direct and indirect interactions between brain regions to reconstruct the empirical FC networks. In doing so, the latent variables within the system (i.e., the learnt low-dimensional embeddings) capture important information regarding the relation between functional and structural networks. By decomposing the reconstructed functional networks in terms of the output of each graph convolution filter, we can extract those brain regions which contribute most to the generation of FC networks from their SC counterparts. Experiments on a large population of healthy subjects from the Human Connectome Project show our model can learn a generalizable and interpretable SC-FC relationship. Overall, results here support the promising prospect of using GCNs to discover more about the complex nature of human brain activity and function. 
    more » « less