Bivalve shells are extensively used as bioarchives for paleoclimate and paleoenvironmental reconstructions. Proxy calibrations in recent shells are the basis for sclerochronology and the applications of geochemistry data to fossils. Shell geochemical information, however, could be altered with the disappearance of intercrystalline organic matrix components, including those linked to shell growth increments, during early diagenesis. Thus, an evaluation of the chemistry of such organics is needed for the correct use of sclerochronological records in fossil shells. Here, we use atom probe tomography (APT) for in situ geochemical characterization of the insoluble organic matrix in shell growth increments in the Antarctic scallop, Adamussium colbecki. We confirm the presence of carboxylated S-rich proteoglycans, possibly involved in calcite nucleation and growth in these scallops, with significant concentrations of magnesium and calcium. Diagenetic modification of these organic components could impact proxy data based on Mg/Ca ratios, but more importantly the use of the δ15N proxy, since most of the shell nitrogen is likely bound to the amide groups of proteins. Overall, our findings reinforce the idea that shell organics need to be accounted for in the understanding of geochemical proxies.
more »
« less
Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies
Occlusion of organic components in synthetic calcite crystals has been recently used as a model to understand the role of intra-crystalline organics in biominerals. However, the characterization of the distribution of both types of organics inside these calcite crystals is very challenging. Here, we discuss the potential of using the technique of atom probe tomography (APT) for such characterization, focusing on the analysis of chitin incorporation in single crystals. Additionally, APT has at least the same spatial resolution as TEM tomography, yet with the advantage of obtaining quantitative chemical data. Results show that chitin, either after degradation with yatalase or in the form of nanofibers, forms discrete clusters (2 to 5 nm) in association to water and hydronium molecules, rather than forming a 3D network inside crystals. Overall findings indicate that APT can be an ideal technique to characterize intra-crystalline organic components in abiogenic and biogenic carbonates to further advance our understanding of biomineralization.
more »
« less
- Award ID(s):
- 1647012
- PAR ID:
- 10176557
- Date Published:
- Journal Name:
- C — Journal of Carbon Research
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2311-5629
- Page Range / eLocation ID:
- 50
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Bivalve shells are extensively used as bioarchives for paleoclimate and paleoenvironmental reconstructions. Proxy calibrations in recent shells are the basis for sclerochronology and the applications of geochemistry data to fossils. Shell geochemical information, however, could be altered with the disappearance of intercrystalline organic matrix components, including those linked to shell growth increments, during early diagenesis. Thus, an evaluation of the chemistry of such organics is needed for the correct use of sclerochronological records in fossil shells. Here, we use atom probe tomography (APT) for in situ geochemical characterization of the insoluble organic matrix in shell growth increments in the Antarctic scallop, Adamussium colbecki. We confirm the presence of carboxylated S-rich proteoglycans, possibly involved in calcite nucleation and growth in these scallops, with significant concentrations of magnesium and calcium. Diagenetic modification of these organic components could impact proxy data based on Mg/Ca ratios, but more importantly the use of the 15N proxy, since most of the shell nitrogen is likely bound to the amide groups of proteins. Overall, our findings reinforce the idea that shell organics need to be accounted for in the understanding of geochemical proxies.more » « less
-
Abstract Mollusk shells protect the animals that form and inhabit them. They are composites of minerals and organics, with diverse mesostructures, including nacre, prismatic calcite, crossed‐lamellar aragonite, and foliated calcite. Twins, that is, crystals mirror symmetric with respect to their coherent interface, occurring as formation or deformation twins, are observed in all mollusk shell mesostructures but never within calcite prisms. Here, nanotwins and microwins within single calcite prisms are observed in different shells. Using Polarization‐dependent Imaging Contrast (PIC) mapping with 20–60 nm resolution, twins are observed to be 0.2–3 µm thick layers of differently oriented and colored crystals with respect to the main prism crystal. Multiple twins are interspersed with the prism crystal, parallel to one another, and similarly oriented. When comparing images of calcite prisms and twins obtained by PIC mapping and by Electron Back‐Scattered Diffraction (EBSD), the images correspond precisely. All twins are e‐twin types, with 127° angular distance betweenc‐axes. E‐twins are the most common deformation twins in geologic calcite, as also observed here in Carrara marble. Location of all twins near the outer surface of all shells and e‐twin type both suggest that twins within calcite prisms in mollusk shells result from deformation twinning.more » « less
-
Abstract Laser-assisted atom probe tomography (APT) is a relatively new, powerful technique for sub-nanometric mineral and biomineral analysis. However, the laser-assisted APT analysis of highly anisotropic and chemically diverse minerals, such as phyllosilicates, may prove especially challenging due to the complex interaction between the crystal structure and the laser pulse upon applying a high electric field. Micas are a representative group of nonswelling clay minerals of relevance to a number of scientific and technological fields. In this study, a Mg-rich biotite was analyzed by APT to generate preliminary data on nonisotropic minerals and to investigate the effect of the crystallographic orientation on mica chemical composition and structure estimation. The difference in results obtained for specimens extracted from the (001) and (hk0) mica surfaces indicate the importance of both experimental parameters and the crystallography. Anisotropy of mica has a strong influence on the physicochemical properties of the mineral during field evaporation and the interpretation of APT data. The promising results obtained in the present study open the way to future innovative APT applications on mica and clay minerals and contribute to the general discussion on the challenges for the analysis of geomaterials by atom probe tomography.more » « less
-
Abstract Biomineralized composites, which are usually composed of microscopic mineral building blocks organized in 3D intercrystalline organic matrices, have evolved unique structural designs to fulfill mechanical and other biological functionalities. While it has been well recognized that the intricate architectural designs of biomineralized composites contribute to their remarkable mechanical performance, the structural features within and corresponding mechanical properties of individual mineral building blocks are often less appreciated in the context of bio‐inspired structural composites. The mineral building blocks in biomineralized composites exhibit a variety of salient intracrystalline structural features, such as, organic inclusions, inorganic impurities (or trace elements), crystalline features (e.g., amorphous phases, single crystals, splitting crystals, polycrystals, and nanograins), residual stress/strain, and twinning, which significantly modify the mechanical properties of biogenic minerals. In this review, recent progress in elucidating the intracrystalline structural features of three most common biomineral systems (calcite, aragonite, and hydroxyapatite) and their corresponding mechanical significance are discussed. Future research directions and corresponding challenges are proposed and discussed, such as the advanced structural characterizations and formation mechanisms of intracrystalline structures in biominerals, amorphous biominerals, and bio‐inspired synthesis.more » « less
An official website of the United States government

