skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exact Controllability of the 1-D Wave Equation on Finite Metric Tree Graphs
In this paper, we consider initial boundary value problems and control problems for the wave equation on finite metric graphs with Dirichlet boundary controls. We propose new constructive algorithms for solving initial boundary value problems on general graphs and boundary control problems on tree graphs. We demonstrate that the wave equation on a tree is exactly controllable if and only if controls are applied at all or all but one of the boundary vertices. We find the minimal controllability time and prove that our result is optimal in the general case. The proofs for the shape and velocity controllability are purely dynamical, while the proof for the full controllability utilizes both dynamical and moment method approaches.  more » « less
Award ID(s):
1909869
PAR ID:
10176787
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Mathematics & Optimization
ISSN:
0095-4616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We establish local well‐posedness in the sense of Hadamard for a certain third‐order nonlinear Schrödinger equation with a multiterm linear part and a general power nonlinearity, known as higher‐order nonlinear Schrödinger equation, formulated on the half‐line . We consider the scenario of associated coefficients such that only one boundary condition is required and hence assume a general nonhomogeneous boundary datum of Dirichlet type at . Our functional framework centers around fractional Sobolev spaces with respect to the spatial variable. We treat both high regularity () and low regularity () solutions: in the former setting, the relevant nonlinearity can be handled via the Banach algebra property; in the latter setting, however, this is no longer the case and, instead, delicate Strichartz estimates must be established. This task is especially challenging in the framework of nonhomogeneous initial‐boundary value problems, as it involves proving boundary‐type Strichartz estimates that are not common in the study of Cauchy (initial value) problems. The linear analysis, which forms the core of this work, crucially relies on a weak solution formulation defined through the novel solution formulae obtained via the Fokas method (also known as the unified transform) for the associated forced linear problem. In this connection, we note that the higher‐order Schrödinger equation comes with an increased level of difficulty due to the presence of more than one spatial derivatives in the linear part of the equation. This feature manifests itself via several complications throughout the analysis, including (i) analyticity issues related to complex square roots, which require careful treatment of branch cuts and deformations of integration contours; (ii) singularities that emerge upon changes of variables in the Fourier analysis arguments; and (iii) complicated oscillatory kernels in the weak solution formula for the linear initial‐boundary value problem, which require a subtle analysis of the dispersion in terms of the regularity of the boundary data. The present work provides a first, complete treatment via the Fokas method of a nonhomogeneous initial‐boundary value problem for a partial differential equation associated with a multiterm linear differential operator. 
    more » « less
  2. Abstract We propose and unify classes of different models for information propagation over graphs. In a first class, propagation is modelled as a wave, which emanates from a set ofknownnodes at an initial time, to all otherunknownnodes at later times with an ordering determined by the arrival time of the information wave front. A second class of models is based on the notion of a travel time along paths between nodes. The time of information propagation from an initialknownset of nodes to a node is defined as the minimum of a generalised travel time over subsets of all admissible paths. A final class is given by imposing a local equation of an eikonal form at eachunknownnode, with boundary conditions at theknownnodes. The solution value of the local equation at a node is coupled to those of neighbouring nodes with lower values. We provide precise formulations of the model classes and prove equivalences between them. Finally, we apply the front propagation models on graphs to semi-supervised learning via label propagation and information propagation on trust networks. 
    more » « less
  3. Consider the elastic scattering of a time-harmonic wave by multiple well-separated rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green's tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz equation. Based on single, double, and combined layer potentials with the simpler Green's function of the Helmholtz equation, we present three different boundary integral equations for the coupled boundary value problem. The well-posedness of the new integral equations is established. Computationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily shaped particles. The method uses the local expansion for the incident wave and the multipole expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and highly accurate for solving elastic scattering problems with multiple particles. 
    more » « less
  4. Motivated by regulating/eliminating the population of herbivorous pests, we investigate a discrete-time plant–herbivore model with two different constant control strategies (removal versus reduction), and formulate the corresponding optimal control problems when its dynamics exhibits varied types of bi-stability and fluctuating environments. We provide basic analysis and identify the critical factors to characterize the optimal controls and the corresponding plant–herbivore dynamics such as the control upper bound (the effectiveness level of the implementation of control measures) and the initial conditions of the plant and herbivore. Our results show that optimal control could be easier when the model has simple dynamics such as stable equilibrium dynamics under constant environment or the model exhibits chaotic dynamics under fluctuating environments. Due to bistability, initial conditions are important for optimal controls. Regardless of with or without fluctuating environments, initial conditions taken from the near the boundary makes optimal control easier. In general, the pest is hard to be eliminated when the control upper bound is not large enough. However, as the control upper bound is increased or the initial conditions are chosen from near the boundary of the basin of attractions, the pest can be manageable regardless of the fluctuating environments. 
    more » « less
  5. Abstract We describe wave decay rates associated to embedded resonances and spectral thresholds for waveguides and manifolds with infinite cylindrical ends. We show that if the cut-off resolvent is polynomially bounded at high energies, as is the case in certain favorable geometries, then there is an associated asymptotic expansion, up to a $$O(t^{-k_0})$$ remainder, of solutions of the wave equation on compact sets as $$t \to \infty $$. In the most general such case we have $$k_0=1$$, and under an additional assumption on the infinite ends we have $$k_0 = \infty $$. If we localize the solutions to the wave equation in frequency as well as in space, then our results hold for quite general waveguides and manifolds with infinite cylindrical ends. To treat problems with and without boundary in a unified way, we introduce a black box framework analogous to the Euclidean one of Sjöstrand and Zworski. We study the resolvent, generalized eigenfunctions, spectral measure, and spectral thresholds in this framework, providing a new approach to some mostly well-known results in the scattering theory of manifolds with cylindrical ends. 
    more » « less