skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal control of a discrete-time plant–herbivore/pest model with bistability in fluctuating environments
Motivated by regulating/eliminating the population of herbivorous pests, we investigate a discrete-time plant–herbivore model with two different constant control strategies (removal versus reduction), and formulate the corresponding optimal control problems when its dynamics exhibits varied types of bi-stability and fluctuating environments. We provide basic analysis and identify the critical factors to characterize the optimal controls and the corresponding plant–herbivore dynamics such as the control upper bound (the effectiveness level of the implementation of control measures) and the initial conditions of the plant and herbivore. Our results show that optimal control could be easier when the model has simple dynamics such as stable equilibrium dynamics under constant environment or the model exhibits chaotic dynamics under fluctuating environments. Due to bistability, initial conditions are important for optimal controls. Regardless of with or without fluctuating environments, initial conditions taken from the near the boundary makes optimal control easier. In general, the pest is hard to be eliminated when the control upper bound is not large enough. However, as the control upper bound is increased or the initial conditions are chosen from near the boundary of the basin of attractions, the pest can be manageable regardless of the fluctuating environments.  more » « less
Award ID(s):
2052820 1716802
PAR ID:
10383882
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Mathematical Biosciences and Engineering
Volume:
19
Issue:
5
ISSN:
1551-0018
Page Range / eLocation ID:
5075 to 5103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a scalable learning framework to solve a system of coupled forward–backward partial differential equations (PDEs) arising from mean field games (MFGs). The MFG system incorporates a forward PDE to model the propagation of population dynamics and a backward PDE for a representative agent’s optimal control. Existing work mainly focus on solving the mean field game equilibrium (MFE) of the MFG system when given fixed boundary conditions, including the initial population state and terminal cost. To obtain MFE efficiently, particularly when the initial population density and terminal cost vary, we utilize a physics-informed neural operator (PINO) to tackle the forward–backward PDEs. A learning algorithm is devised and its performance is evaluated on one application domain, which is the autonomous driving velocity control. Numerical experiments show that our method can obtain the MFE accurately when given different initial distributions of vehicles. The PINO exhibits both memory efficiency and generalization capabilities compared to physics-informed neural networks (PINNs). 
    more » « less
  2. null (Ed.)
    Herbivore-induced plant volatile (HIPV)-mediated eavesdropping by plants is a well-documented, inducible phenomenon that has practical agronomic applications for enhancing plant defense and pest management. However, as with any inducible phenomenon, responding to volatile cues may incur physiological and ecological costs that limit plant productivity. In a common garden experiment, we tested the hypothesis that exposure to a single HIPV would decrease herbivore damage at the cost of reduced plant growth and reproduction. Lima bean (Phaseolus lunatus) and pepper (Capsicum annuum) plants were exposed to a persistent, low dose (~10 ng/h) of the green leaf volatile cis-3-hexenyl acetate (z3HAC), which is a HIPV and damage-associated volatile. z3HAC-treated pepper plants were shorter, had less aboveground and belowground biomass, and produced fewer flowers and fruits relative to controls, while z3HAC-treated lima bean plants were taller and produced more leaves and flowers than did controls. Natural herbivory was reduced in z3HAC-exposed lima bean plants, but not in pepper. Cyanogenic potential, a putative direct defense mechanism in lima bean, was lower in young z3HAC-exposed leaves, suggesting a growth–defense tradeoff from z3HAC exposure alone. Plant species-specific responses to an identical volatile cue have important implications for agronomic costs and benefits of volatile-mediated interplant communication under field conditions. 
    more » « less
  3. Eigenbrode, Sanford (Ed.)
    Abstract Climate change-induced salinity intrusion into agricultural soils is known to negatively impact crop production and food security. However, the effects of salinity increase on plant–herbivore–natural enemy systems and repercussions for pest suppression services are largely unknown. Here, we examine the effects of increased salinity on communities of rice (Oryza sativa), brown planthopper (BPH), Nilaparvata lugens, and green mirid bug (GMB), Cyrtorhinus lividipennis, under greenhouse conditions. We found that elevated salinity significantly suppressed the growth of two rice cultivars. Meanwhile, BPH population size also generally decreased due to poor host plant quality induced by elevated salinity. The highest BPH density occurred at 2.0 dS/m salinity and declined thereafter with increasing salinity, irrespective of rice cultivar. The highest population density of GMB also occurred under control conditions and decreased significantly with increasing salinity. Higher salinity directly affected the rice crop by reducing plant quality measured with reference to biomass production and plant height, whereas inducing population developmental asynchrony between BPH and GMB observed at 2 dS/m salinity and potentially uncoupling prey–predator dynamics. Our results suggest that increased salinity has harmful effects on plants, herbivores, natural enemies, as well as plant–pest–predator interactions. The effects measured here suggest that the bottom-up effects of predatory insects on rice pests will likely decline in rice produced in coastal areas where salinity intrusion is common. Our findings indicate that elevated salinity influences tritrophic interactions in rice production landscapes, and further research should address resilient rice insect pest management combining multipests and predators in a changing environment. 
    more » « less
  4. Abstract Whether an ecological community is controlled from above or below remains a popular framework that continues generating interesting research questions and takes on especially important meaning in agroecosystems. We describe the regulation from above of three coffee herbivores, a leaf herbivore (the green coffee scale, Coccus viridis), a seed predator (the coffee berry borer, Hypothenemus hampei), and a plant pathogen (the coffee rust disease, caused by Hemelia vastatrix) by various natural enemies, emphasizing the remarkable complexity involved. We emphasize the intersection of this classical question of ecology with the burgeoning field of complex systems, including references to chaos, critical transitions, hysteresis, basin or boundary collision, and spatial self-organization, all aimed at the applied question of pest control in the coffee agroecosystem. 
    more » « less
  5. In this paper, we consider initial boundary value problems and control problems for the wave equation on finite metric graphs with Dirichlet boundary controls. We propose new constructive algorithms for solving initial boundary value problems on general graphs and boundary control problems on tree graphs. We demonstrate that the wave equation on a tree is exactly controllable if and only if controls are applied at all or all but one of the boundary vertices. We find the minimal controllability time and prove that our result is optimal in the general case. The proofs for the shape and velocity controllability are purely dynamical, while the proof for the full controllability utilizes both dynamical and moment method approaches. 
    more » « less