skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Defining information-based functional objectives for neurostimulation and control
Neurostimulation - the practice of applying exogenous excitation, e.g., via electrical current, to the brain - has been used for decades in clinical applications such as the treatment of motor disorders and neuropsychiatric illnesses. Over the past several years, more emphasis has been placed on understanding and designing neurostimulation from a systems-theoretic perspective, so as to better optimize its use. Particular questions of interest have included designing stimulation waveforms that best induce certain patterns of brain activity while minimizing expenditure of stimulus power. The pursuit of these designs faces a fundamental conundrum, insofar as they presume that the desired pattern (e.g., desyn-chronization of a neural population) is known a priori. In this paper, we present an alternative paradigm wherein the goal of the stimulation is not to induce a prescribed pattern, but rather to simply improve the functionality of the stimulated circuit/system. Here, the notion of functionality is defined in terms of an information-theoretic objective. Specifically, we seek closed loop control designs that maximize the ability of a controlled circuit to encode an afferent `hidden input,' without prescription of dynamics or output. In this way, the control attempts only to make the system `effective' without knowing beforehand the dynamics that are needed to be induced. We devote most of our effort to defining this framework mathematically, providing algorithmic procedures that demonstrate its solution and interpreting the results of this procedure for simple, prototypical dynamical systems. Simulation results are provided for more complex models, including an example involving control of a canonical neural mass model.  more » « less
Award ID(s):
1653589
PAR ID:
10176963
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 American Control Conference (ACC)
Page Range / eLocation ID:
866 to 871
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brain dynamics can exhibit narrow-band nonlinear oscillations and multistability. For a subset of disorders of consciousness and motor control, we hypothesized that some symptoms originate from the inability to spontaneously transition from one attractor to another. Using external perturbations, such as electrical pulses delivered by deep brain stimulation devices, it may be possible to induce such transition out of the pathological attractors. However, the induction of transition may be non-trivial, rendering the current open-loop stimulation strategies insufficient. In order to develop next-generation neural stimulators that can intelligently learn to induce attractor transitions, we require a platform to test the efficacy of such systems. To this end, we designed an analog circuit as a model for the multistable brain dynamics. The circuit spontaneously oscillates stably on two periods as an instantiation of a 3-dimensional continuous-time gated recurrent neural network. To discourage simple perturbation strategies, such as constant or random stimulation patterns from easily inducing transition between the stable limit cycles, we designed a state-dependent nonlinear circuit interface for external perturbation. We demonstrate the existence of nontrivial solutions to the transition problem in our circuit implementation. 
    more » « less
  2. Abstract Objective.A major challenge in designing closed-loop brain-computer interfaces is finding optimal stimulation patterns as a function of ongoing neural activity for different subjects and different objectives. Traditional approaches, such as those currently used for deep brain stimulation, have largely followed a manual trial-and-error strategy to search for effective open-loop stimulation parameters, a strategy that is inefficient and does not generalize to closed-loop activity-dependent stimulation.Approach.To achieve goal-directed closed-loop neurostimulation, we propose the use of brain co-processors, devices which exploit artificial intelligence to shape neural activity and bridge injured neural circuits for targeted repair and restoration of function. Here we investigate a specific type of co-processor called a ‘neural co-processor’ which uses artificial neural networks and deep learning to learn optimal closed-loop stimulation policies. The co-processor adapts the stimulation policy as the biological circuit itself adapts to the stimulation, achieving a form of brain-device co-adaptation. Here we use simulations to lay the groundwork for futurein vivotests of neural co-processors. We leverage a previously published cortical model of grasping, to which we applied various forms of simulated lesions. We used our simulations to develop the critical learning algorithms and study adaptations to non-stationarity in preparation for futurein vivotests.Main results.Our simulations show the ability of a neural co-processor to learn a stimulation policy using a supervised learning approach, and to adapt that policy as the underlying brain and sensors change. Our co-processor successfully co-adapted with the simulated brain to accomplish the reach-and-grasp task after a variety of lesions were applied, achieving recovery towards healthy function in the range 75%–90%.Significance.Our results provide the first proof-of-concept demonstration, using computer simulations, of a neural co-processor for adaptive activity-dependent closed-loop neurostimulation for optimizing a rehabilitation goal after injury. While a significant gap remains between simulations andin vivoapplications, our results provide insights on how such co-processors may eventually be developed for learning complex adaptive stimulation policies for a variety of neural rehabilitation and neuroprosthetic applications. 
    more » « less
  3. null (Ed.)
    Responsive neurostimulation is increasingly required to probe neural circuit function and treat neuropsychiatric disorders. We introduce a multiplex-then-amplify (MTA) scheme that, in contrast to current approaches (which necessitate an equal number of amplifiers as number of channels), only requires one amplifier per multiplexer, significantly reducing the number of components and the size of electronics in multichannel acquisition systems. It also enables simultaneous stimulation of arbitrary waveforms on multiple independent channels. We validated the function of MTA by developing a fully implantable, responsive embedded system that merges the ability to acquire individual neural action potentials using conformable conducting polymer-based electrodes with real-time onboard processing, low-latency arbitrary waveform stimulation, and local data storage within a miniaturized physical footprint. We verified established responsive neurostimulation protocols and developed a network intervention to suppress pathological coupling between the hippocampus and cortex during interictal epileptiform discharges. The MTA design enables effective, self-contained, chronic neural network manipulation with translational relevance to the treatment of neuropsychiatric disease. 
    more » « less
  4. We present a neural network approach for closed-loop deep brain stimulation (DBS). We cast the problem of finding an optimal neurostimulation strategy as a control problem. In this setting, control policies aim to optimize therapeutic outcomes by tailoring the parameters of a DBS system, typically via electrical stimulation, in real time based on the patient’s ongoing neuronal activity. We approximate the value function offline using a neural network to enable generating controls (stimuli) in real time via the feedback form. The neuronal activity is characterized by a nonlinear, stiff system of differential equations as dictated by the Hodgkin-Huxley model. Our training process leverages the relationship between Pontryagin’s maximum principle and Hamilton-Jacobi-Bellman equations to update the value function estimates simultaneously. Our numerical experiments illustrate the accuracy of our approach for out-of-distribution samples and the robustness to moderate shocks and disturbances in the system. 
    more » « less
  5. In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke. 
    more » « less