Abstract. Evidence has accumulated that secondary organic aerosols (SOAs) exhibit complex morphologies with multiple phases that can adopt amorphous semisolid or glassy phase states. However, experimental analysis and numerical modeling on the formation and evolution of SOA still often employ equilibrium partitioning with an ideal mixing assumption in the particle phase. Here we apply the kinetic multilayer model of gas–particle partitioning (KM-GAP) to simulate condensation of semi-volatile species into a core–shell phase-separated particle to evaluate equilibration timescales of SOA partitioning. By varying bulk diffusivity and the activity coefficient of the condensing species in the shell, we probe the complex interplay of mass transfer kinetics and the thermodynamics of partitioning. We found that the interplay of non-ideality and phase state can impact SOA partitioning kinetics significantly. The effect of non-ideality on SOA partitioning is slight for liquid particles but becomes prominent in semisolid or solid particles. If the condensing species is miscible with a low activity coefficient in the viscous shell phase, the particle can reach equilibrium with the gas phase long before the dissolution of concentration gradients in the particle bulk. For the condensation of immiscible species with a high activity coefficient in the semisolid shell, the mass concentration in the shell may become higher or overshoot its equilibrium concentration due to slow bulk diffusion through the viscous shell for excess mass to be transferred to the core phase. Equilibration timescales are shorter for the condensation of lower-volatility species into semisolid shell; as the volatility increases, re-evaporation becomes significant as desorption is faster for volatile species than bulk diffusion in a semisolid matrix, leading to an increase in equilibration timescale. We also show that the equilibration timescale is longer in an open system relative to a closed system especially for partitioning of miscible species; hence, caution should be exercised when interpreting and extrapolating closed-system chamber experimental results to atmosphere conditions. Our results provide a possible explanation for discrepancies between experimental observations of fast particle–particle mixing and predictions of long mixing timescales in viscous particles and provide useful insights into description and treatment of SOA in aerosol models.
more »
« less
Single-particle experiments measuring humidity and inorganic salt effects on gas-particle partitioning of butenedial
Abstract. An improved understanding of the fate and properties of atmospheric aerosolparticles requires a detailed process-level understanding of fundamentalfactors influencing the aerosol, including partitioning of aerosolcomponents between the gas and particle phases. Laboratory experiments withlevitated particles provide a way to study fundamental aerosol processesover timescales relevant to the multiday lifetime of atmospheric aerosolparticles, in a controlled environment in which various characteristicsrelevant to atmospheric aerosol can be prepared (e.g., highsurface-to-volume ratio, highly concentrated or supersaturated solutions,changes to relative humidity). In this study, the four-carbon unsaturatedcompound butenedial, a dialdehyde produced by oxidation of aromaticcompounds that undergoes hydration in the presence of water, was used as amodel organic aerosol component to investigate different factors affectinggas–particle partitioning, including the role of lower-volatility“reservoir” species such as hydrates, timescales involved inequilibration between higher- and lower-volatility forms, and the effect ofinorganic salts. The experimental approach was to use a laboratory systemcoupling particle levitation in an electrodynamic balance (EDB) withparticle composition measurement via mass spectrometry (MS). In particular,by fitting measured evaporation rates to a kinetic model, the effectivevapor pressure was determined for butenedial and compared under differentexperimental conditions, including as a function of ambient relativehumidity and the presence of high concentrations of inorganic salts. Even underdry (RH<5 %) conditions, the evaporation rate of butenedial isorders of magnitude lower than what would be expected if butenedial existedpurely as a dialdehyde in the particle, implying an equilibrium stronglyfavoring hydrated forms and the strong preference of certain dialdehydecompounds to remain in a hydrated form even under lower water contentconditions. Butenedial exhibits a salting-out effect in the presence ofsodium chloride and sodium sulfate, in contrast to glyoxal. The outcomes ofthese experiments are also helpful in guiding the design of future EDB-MSexperiments.
more »
« less
- Award ID(s):
- 1808084
- PAR ID:
- 10176966
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 19
- Issue:
- 22
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 14195 to 14209
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent research in atmospheric chemistry suggested that gaseous amines may rapidly react with the acidic components in the aerosol to be incorporated in the particle phase. However, laboratory experiments suggested that these heterogeneous processes may be sensitive to the reaction conditions, such as relative humidity (RH), the initial aerosol acidity and the initial concentration of gaseous ammonia which is ubiquitous in the atmosphere. We studied the heterogenous reactions between several amines and ammonium sulfate using a series of thermodynamic simulations under varying initial conditions, including RH, particle-phase acidity and gaseous amine and ammonia concentrations. Several distinctively different trends in the particle-phase ammonium, amines and water content were observed, depending significantly on the particle-phase acidity and the initial amine to ammonia mole ratio. One notable observation was that alkylamines may facilitate the water uptake of ammonium sulfate even in the presence of 1000 times more ammonia gas. Such change in aerosol water content may alter the surface tension, uptake coefficient and could formation properties of aerosol and influence the radiative forcing of the particles.more » « less
-
Abstract. A new inlet for studying the aerosol particles andhydrometeor residuals that compose mixed-phase clouds – the phaSeseParation Inlet for Droplets icE residuals and inteRstitial aerosolparticles (SPIDER) – is described here. SPIDER combines a large pumpedcounterflow virtual impactor (L-PCVI), a flow tube evaporation chamber, anda pumped counterflow virtual impactor (PCVI) to separate droplets, icecrystals (∼3–25 µm), and interstitial aerosolparticles for simultaneous sampling. Laboratory verification tests of eachindividual component and the composite SPIDER system were conducted.Transmission efficiency, evaporation, and ice crystals' survival weredetermined to show the capability of the system. The experiments show theSPIDER system can separate distinct cloud elements and interstitial aerosolparticles for subsequent analysis. As a field instrument, SPIDER will helpexplore the properties of different cloud elements and interstitial aerosolparticles in mixed-phase clouds.more » « less
-
Abstract To quantify the volatility of organic aerosols (OA), a comprehensive campaign was conducted in the Chinese megacity. Volatility distributions of OA and particle‐phase organic nitrate (pON) were estimated based on five methods: (a) empirical method and (b) kinetic model based on the measurement of a thermodenuder (TD) coupled with an aerosol mass spectrometer; (c) Formula‐based SIMPOL model‐driven method; (d) Element‐based estimations using molecular formula measurements of OA; and (e) gas/particle partitioning. Our results demonstrate that the ambient OA volatility distribution shows good agreement between the two heating methods and the formula‐based method when assuming ambient OA was mainly composed of organic nitrate (pON), organic sulfate and acid groups using the SIMPOL model. However, the element‐based method tends to overestimate the volatility of OA compared to the above three methods, suggesting large uncertainties in the parameterizations or in the representativeness of the molecular measurements that need further refinement. The volatility of ambient OA is generally lower than that of the laboratory‐derived secondary OA, emphasizing the impact of aging. A large fraction at the higher and lower volatility ranges (approximately logC* ≤ −9 and ≥2 μg m−3) was found for pON, implying the importance of both extremely low volatile and semi‐volatile species. Overall, this study evaluates different methods for volatility estimation and gives new insight into the volatility of OA and pON in urban areas.more » « less
-
Abstract. Heterogeneous chemistry of oxidized carbons in aerosol phase is known to significantly contribute to secondary organic aerosol (SOA) burdens. TheUNIfied Partitioning Aerosol phase Reaction (UNIPAR) model was developed to process the multiphase chemistry of various oxygenated organics into SOAmass predictions in the presence of salted aqueous phase. In this study, the UNIPAR model simulated the SOA formation from gasoline fuel, which is amajor contributor to the observed concentration of SOA in urban areas. The oxygenated products, predicted by the explicit mechanism, were lumpedaccording to their volatility and reactivity and linked to stoichiometric coefficients which were dynamically constructed by predetermined mathematical equations at different NOx levels and degrees of gas aging. To improve the model feasibility in regional scales, the UNIPAR model was coupled with the Carbon Bond 6 (CB6r3) mechanism. CB6r3 estimated the hydrocarbon consumption and the concentration of radicals (i.e., RO2 and HO2) to process atmospheric aging of gas products. The organic species concentrations, estimated bystoichiometric coefficient array and the consumption of hydrocarbons, were applied to form gasoline SOA via multiphase partitioning andaerosol-phase reactions. To improve the gasoline SOA potential in ambient air, model parameters were also corrected for gas–wall partitioning(GWP). The simulated gasoline SOA mass was evaluated against observed data obtained in the University of Florida Atmospheric PHotochemical Outdoor Reactor (UF-APHOR) chamber under varying sunlight, NOx levels, aerosol acidity, humidity, temperature, and concentrations of aqueous salts and gasoline vapor. Overall, gasoline SOAwas dominantly produced via aerosol-phase reaction, regardless of the seed conditions owing to heterogeneous reactions of reactive multifunctionalorganic products. Both the measured and simulated gasoline SOA was sensitive to seed conditions showing a significant increase in SOA mass with increasing aerosol acidity and water content. A considerable difference in SOA mass appeared between two inorganic aerosol states (dry aerosol vs. wet aerosol) suggesting a large difference in SOA formation potential between arid (western United States) and humid regions (eastern United States). Additionally, aqueous reactions of organic products increased the sensitivity of gasoline SOA formation to NOx levels as well as temperature. The impact of the chamber wall on SOA formation was generally significant, and it appeared to be higher in the absence of wet salts. Based on the evaluation of UNIPAR against chamber data from 10 aromatic hydrocarbons and gasoline fuel, we conclude that the UNIPAR model with both heterogeneous reactions and the model parameters corrected for GWP can improve the ability to accurately estimate SOA mass in regional scales.more » « less