skip to main content

Title: Effects of particle phase acidity and gaseous ammonia on the heterogenous interactions between amines and ambient aerosol
Recent research in atmospheric chemistry suggested that gaseous amines may rapidly react with the acidic components in the aerosol to be incorporated in the particle phase. However, laboratory experiments suggested that these heterogeneous processes may be sensitive to the reaction conditions, such as relative humidity (RH), the initial aerosol acidity and the initial concentration of gaseous ammonia which is ubiquitous in the atmosphere. We studied the heterogenous reactions between several amines and ammonium sulfate using a series of thermodynamic simulations under varying initial conditions, including RH, particle-phase acidity and gaseous amine and ammonia concentrations. Several distinctively different trends in the particle-phase ammonium, amines and water content were observed, depending significantly on the particle-phase acidity and the initial amine to ammonia mole ratio. One notable observation was that alkylamines may facilitate the water uptake of ammonium sulfate even in the presence of 1000 times more ammonia gas. Such change in aerosol water content may alter the surface tension, uptake coefficient and could formation properties of aerosol and influence the radiative forcing of the particles.
Authors:
; ; ;
Award ID(s):
1847019
Publication Date:
NSF-PAR ID:
10330198
Journal Name:
The 262nd American Chemical Society National Meeting & Exposition
Sponsoring Org:
National Science Foundation
More Like this
  1. Sea salt aerosols contribute significantly to the mass loading of ambient aerosol, which may serve as cloud condensation nuclei and can contribute to light scattering in the atmosphere. Two major chemical components commonly found in sea salts are ammonium sulfate (AS) and sodium chloride (NaCl). It has been shown that alkylamines, derivatives of ammonia, can react with ammonium salts in the particle-phase to displace ammonia and likely change the particle properties. This study investigated the effects of atmospheric alkylamines on the composition and properties of sea salt aerosols using a chemical system of methylamine (MA, as a proxy of alkylamines), AS and NaCl (as a proxy of sea salt aerosol). The concentrations of ammonia and MA in aqueous/gas phases at the thermodynamic equilibrium were determined using the Extended Aerosols and Inorganics Model (E-AIM) under varying initial inputs, along with the deliquescence relative humidity (DRH) and the corresponding particle water content. Our findings indicated a notable negative relationship between MA concentration and the DRH for both AS and NaCl while the effect of MA on NaCl is smaller than that on AS. The salt of MA in the particle phase may absorb water vapor and may lead to the displacement reactionmore »between AS and NaCl due to the low solubility of sodium sulfate. The acidity in the particle phase also played a significant role in affecting the DRH of sea salt aerosols. Since both sea salt aerosol and alkylamines are emitted into the atmosphere from the ocean in large quantities, our study suggested the potential impact of alkylamines on the environment and the climate via the modification of sea salt aerosol properties.« less
  2. The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds at liquid water contents of 40–75% of the total particle mass. OA formation from IEPOX is a kinetically limited process, thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis / trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na+ was substituted for NH4+. The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 107 M atm−1 (−50 / +100%). A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfatemore »(SO42-), possibly suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates, and amines in the particle organic composition. The results are consistent with weak correlations between IEPOX-derived OA and particle acidity or liquid water observed in field studies, as the chemical system is nucleophile-limited and not limited in water or catalyst activity.

    « less
  3. In order to examine the reaction products, kinetics, and implications of ISOPOOH with aqueous sulfite, ammonium bisulfate particles were injected into the UNC 10‐m3 indoor environmental chamber under humid (i.e., 72% RH) and dark conditions. After the inorganic sulfate concentration stabilized, selected concentrations of gas‐phase 1,2‐ISOPOOH were injected into the chamber, and aerosols showed a minimal mass increase. Gaseous SO2 was subsequently injected into the chamber and a significant amount of aerosol mass was produced. The gas‐phase ISOPOOH and particle‐phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), a particle‐into‐liquid sampler (PILS) for analysis by ion chromatography analysis (IC), and filter samples were analyzed by an ultra‐performance liquid chromatography coupled to an electrospray ionization highresolution quadrupole time‐of‐flight mass spectrometry (UPLCESI‐ HR‐QTOFMS) to obtain offline molecular‐level information. Results show that a significant amount of inorganic sulfate and organosulfates were formed rapidly after injecting SO2, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Multifunctional C5‐organic species that were previously measured in atmospheric fine aerosol samples were also reported here as reaction products, including 2‐methyletrols and 2‐methyltetrol sulfates that were previously thought to bemore »only produced from the reactive uptake of isoprene‐derived epoxydiols (IEPOX). Such results indicate that the multiphase reactions of ISOPOOH could have significant impacts on the atmospheric lifecycle of organic aerosols and sulfur, as well as the physicochemical properties of ambient particles.« less
  4. Abstract. This study presents a characterization of the hygroscopic growth behaviour and effects of different inorganic seed particles on the formation of secondary organic aerosols (SOAs) from the dark ozone-initiated oxidation of isoprene at low NOx conditions. We performed simulations of isoprene oxidation using a gas-phase chemical reaction mechanism based onthe Master Chemical Mechanism (MCM) in combination with an equilibriumgas–particle partitioning model to predict the SOA concentration. Theequilibrium model accounts for non-ideal mixing in liquid phases, includingliquid–liquid phase separation (LLPS), and is based on the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) model for mixture non-ideality and the EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature,Intramolecular, and Non-additivity effects) model for pure compound vapourpressures. Measurements from the Cosmics Leaving Outdoor Droplets (CLOUD)chamber experiments, conducted at the European Organization for NuclearResearch (CERN) for isoprene ozonolysis cases, were used to aid inparameterizing the SOA yields at different atmospherically relevanttemperatures, relative humidity (RH), and reacted isoprene concentrations. To represent the isoprene-ozonolysis-derived SOA, a selection of organicsurrogate species is introduced in the coupled modelling system. The modelpredicts a single, homogeneously mixed particle phase at all relativehumidity levels for SOA formation in the absence of any inorganic seedparticles. In the presence ofmore »aqueous sulfuric acid or ammonium bisulfateseed particles, the model predicts LLPS to occur below ∼ 80 % RH, where the particles consist of an inorganic-rich liquid phase andan organic-rich liquid phase; however, this includes significant amounts of bisulfate and water partitioned to the organic-rich phase. The measurements show an enhancement in the SOA amounts at 85 % RH, compared to 35 % RH, for both the seed-free and seeded cases. The model predictions of RH-dependent SOA yield enhancements at 85 % RH vs. 35 % RH are 1.80 for a seed-free case, 1.52 for the case with ammonium bisulfate seed, and 1.06 for the case with sulfuric acid seed. Predicted SOA yields are enhanced in the presence of an aqueous inorganic seed, regardless of the seed type (ammonium sulfate, ammonium bisulfate, or sulfuric acid) in comparison with seed-free conditions at the same RH level. We discuss the comparison of model-predicted SOA yields with a selection of other laboratory studies on isoprene SOA formation conducted at different temperatures and for a variety of reacted isoprene concentrations. Those studies were conducted at RH levels at or below 40 % with reported SOA mass yields ranging from 0.3 % up to 9.0 %, indicating considerable variations. A robust feature of our associated gas–particle partitioning calculations covering the whole RH range is the predicted enhancement of SOA yield at high RH (> 80 %) compared to low RH (dry) conditions, which is explained by the effect of particle water uptake and its impact on the equilibrium partitioning of all components.« less
  5. Abstract. Secondary organic aerosol (SOA), formed through oxidation of volatile organic compounds (VOCs), displays complex viscosity and phase behaviorsinfluenced by temperature, relative humidity (RH), and chemical composition. Here, the efficacy of a multi-stage electrical low-pressure impactor(ELPI) for indirect water uptake measurements was studied for ammonium sulfate (AS) aerosol, sucrose aerosol, and α-pinene-derived SOA. Allthree aerosol systems were subjected to greater than 90 % chamber relative humidity, with subsequent analysis indicating persistence of particlebounce for sucrose aerosol of 70 nm (initial dry diameter) and α-pinene-derived SOA of number geometric mean diameters between 39 and136 nm (initial dry diameter). On the other hand, sucrose aerosol of 190 nm (initial dry diameter) and AS aerosol down to70 nm (initial dry diameter) exhibited no particle bounce at elevated RH. Partial drying of aerosol within the lower diameter ELPI impactionstages, where inherent and significant RH reductions occur, is proposed as one explanation for particle bounce persistence.