skip to main content


Title: Rapid, Progressive Sub-Graph Explorations for Interactive Visual Analytics over Large-Scale Graph Datasets
Award ID(s):
1931363 1931324 1931283
NSF-PAR ID:
10176989
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT)
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNNs) have drawn significant attentions over the years and been broadly applied to essential applications requiring solid robustness or vigorous security standards, such as product recommendation and user behavior modeling. Under these scenarios, exploiting GNN's vulnerabilities and further downgrading its performance become extremely incentive for adversaries. Previous attackers mainly focus on structural perturbations or node injections to the existing graphs, guided by gradients from the surrogate models. Although they deliver promising results, several limitations still exist. For the structural perturbation attack, to launch a proposed attack, adversaries need to manipulate the existing graph topology, which is impractical in most circumstances. Whereas for the node injection attack, though being more practical, current approaches require training surrogate models to simulate a white-box setting, which results in significant performance downgrade when the surrogate architecture diverges from the actual victim model. To bridge these gaps, in this paper, we study the problem of black-box node injection attack, without training a potentially misleading surrogate model. Specifically, we model the node injection attack as a Markov decision process and propose Gradient-free Graph Advantage Actor Critic, namely G2A2C, a reinforcement learning framework in the fashion of advantage actor critic. By directly querying the victim model, G2A2C learns to inject highly malicious nodes with extremely limited attacking budgets, while maintaining a similar node feature distribution. Through our comprehensive experiments over eight acknowledged benchmark datasets with different characteristics, we demonstrate the superior performance of our proposed G2A2C over the existing state-of-the-art attackers. Source code is publicly available at: https://github.com/jumxglhf/G2A2C.

     
    more » « less
  2. With the increase of multi-view graph data, multi-view graph clustering (MVGC) that can discover the hidden clusters without label supervision has attracted growing attention from researchers. Existing MVGC methods are often sensitive to the given graphs, especially influenced by the low quality graphs, i.e., they tend to be limited by the homophily assumption. However, the widespread real-world data hardly satisfy the homophily assumption. This gap limits the performance of existing MVGC methods on low homophilous graphs. To mitigate this limitation, our motivation is to extract high-level view-common information which is used to refine each view's graph, and reduce the influence of non-homophilous edges. To this end, we propose dual label-guided graph refinement for multi-view graph clustering (DuaLGR), to alleviate the vulnerability in facing low homophilous graphs. Specifically, DuaLGR consists of two modules named dual label-guided graph refinement module and graph encoder module. The first module is designed to extract the soft label from node features and graphs, and then learn a refinement matrix. In cooperation with the pseudo label from the second module, these graphs are refined and aggregated adaptively with different orders. Subsequently, a consensus graph can be generated in the guidance of the pseudo label. Finally, the graph encoder module encodes the consensus graph along with node features to produce the high-level pseudo label for iteratively clustering. The experimental results show the superior performance on coping with low homophilous graph data. The source code for DuaLGR is available at https://github.com/YwL-zhufeng/DuaLGR. 
    more » « less
  3. Introduction

    Big graphs like social network user interactions and customer rating matrices require significant computing resources to maintain. Data owners are now using public cloud resources for storage and computing elasticity. However, existing solutions do not fully address the privacy and ownership protection needs of the key involved parties: data contributors and the data owner who collects data from contributors.

    Methods

    We propose a Trusted Execution Environment (TEE) based solution: TEE-Graph for graph spectral analysis of outsourced graphs in the cloud. TEEs are new CPU features that can enable much more efficient confidential computing solutions than traditional software-based cryptographic ones. Our approach has several unique contributions compared to existing confidential graph analysis approaches. (1) It utilizes the unique TEE properties to ensure contributors' new privacy needs, e.g., the right of revocation for shared data. (2) It implements efficient access-pattern protection with a differentially private data encoding method. And (3) it implements TEE-based special analysis algorithms: the Lanczos method and the Nystrom method for efficiently handling big graphs and protecting confidentiality from compromised cloud providers.

    Results

    The TEE-Graph approach is much more efficient than software crypto approaches and also immune to access-pattern-based attacks. Compared with the best-known software crypto approach for graph spectral analysis, PrivateGraph, we have seen that TEE-Graph has 103−105times lower computation, storage, and communication costs. Furthermore, the proposed access-pattern protection method incurs only about 10%-25% of the overall computation cost.

    Discussion

    Our experimentation showed that TEE-Graph performs significantly better and has lower costs than typical software approaches. It also addresses the unique ownership and access-pattern issues that other TEE-related graph analytics approaches have not sufficiently studied. The proposed approach can be extended to other graph analytics problems with strong ownership and access-pattern protection.

     
    more » « less