skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal
This work considers the sample and computational complexity of obtaining an $$\epsilon$$-optimal policy in a discounted Markov Decision Process (MDP), given only access to a generative model. In this model, the learner accesses the underlying transition model via a sampling oracle that provides a sample of the next state, when given any state-action pair as input. We are interested in a basic and unresolved question in model based planning: is this naïve “plug-in” approach — where we build the maximum likelihood estimate of the transition model in the MDP from observations and then find an optimal policy in this empirical MDP — non-asymptotically, minimax optimal? Our main result answers this question positively. With regards to computation, our result provides a simpler approach towards minimax optimal planning: in comparison to prior model-free results, we show that using \emph{any} high accuracy, black-box planning oracle in the empirical model suffices to obtain the minimax error rate. The key proof technique uses a leave-one-out analysis, in a novel “absorbing MDP” construction, to decouple the statistical dependency issues that arise in the analysis of model-based planning; this construction may be helpful more generally.  more » « less
Award ID(s):
1703574
PAR ID:
10177060
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
125
ISSN:
2640-3498
Page Range / eLocation ID:
67-83
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Model-based reinforcement learning (RL), which finds an optimal policy using an empirical model, has long been recognized as one of the cornerstones of RL. It is especially suitable for multi-agent RL (MARL), as it naturally decouples the learning and the planning phases, and avoids the non-stationarity problem when all agents are improving their policies simultaneously using samples. Though intuitive and widely-used, the sample complexity of model-based MARL algorithms has been investigated relatively much less often. In this paper, we aim to address the fundamental open question about the sample complexity of model-based MARL. We study arguably the most basic MARL setting: two-player discounted zero-sum Markov games, given only access to a generative model of state transition. We show that model-based MARL achieves a near optimal sample complexity for finding the Nash equilibrium (NE) \emph{value} up to some additive error. We also show that this method is near-minimax optimal with a tight dependence on the horizon and the number of states. Our results justify the efficiency of this simple model-based approach in the multi-agent RL setting. 
    more » « less
  2. In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment. This serves as an extreme test for an agent's ability to effectively use historical data which is known to be critical for efficient RL. Prior work in offline RL has been confined almost exclusively to model-free RL approaches. In this work, we present MOReL, an algorithmic framework for model-based offline RL. This framework consists of two steps: (a) learning a pessimistic MDP using the offline dataset; (b) learning a near-optimal policy in this pessimistic MDP. The design of the pessimistic MDP is such that for any policy, the performance in the real environment is approximately lower-bounded by the performance in the pessimistic MDP. This enables the pessimistic MDP to serve as a good surrogate for purposes of policy evaluation and learning. Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline RL. Empirically, MOReL matches or exceeds state-of-the-art results on widely used offline RL benchmarks. Overall, the modular design of MOReL enables translating advances in its components (for e.g., in model learning, planning etc.) to improvements in offline RL. 
    more » « less
  3. In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment. The ability to train RL policies offline would greatly expand where RL can be applied, its data efficiency, and its experimental velocity. Prior work in offline RL has been confined almost exclusively to model-free RL approaches. In this work, we present MOReL, an algorithmic framework for model-based offline RL. This framework consists of two steps: (a) learning a pessimistic MDP (P-MDP) using the offline dataset; (b) learning a near-optimal policy in this P-MDP. The learned P-MDP has the property that for any policy, the performance in the real environment is approximately lower-bounded by the performance in the P-MDP. This enables it to serve as a good surrogate for purposes of policy evaluation and learning, and overcome common pitfalls of model-based RL like model exploitation. Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline RL. Through experiments, we show that MOReL matches or exceeds state-of-the-art results in widely studied offline RL benchmarks. Moreover, the modular design of MOReL enables future advances in its components (e.g., in model learning, planning etc.) to directly translate into improvements for offline RL. 
    more » « less
  4. The practicality of reinforcement learning algorithms has been limited due to poor scaling with respect to the problem size, as the sample complexity of learning an ε-optimal policy is Ω(|S||A|H/ ε2) over worst case instances of an MDP with state space S, action space A, and horizon H. We consider a class of MDPs for which the associated optimal Q* function is low rank, where the latent features are unknown. While one would hope to achieve linear sample complexity in |S| and |A| due to the low rank structure, we show that without imposing further assumptions beyond low rank of Q*, if one is constrained to estimate the Q function using only observations from a subset of entries, there is a worst case instance in which one must incur a sample complexity exponential in the horizon H to learn a near optimal policy. We subsequently show that under stronger low rank structural assumptions, given access to a generative model, Low Rank Monte Carlo Policy Iteration (LR-MCPI) and Low Rank Empirical Value Iteration (LR-EVI) achieve the desired sample complexity of Õ((|S|+|A|)poly (d,H)/ε2) for a rank d setting, which is minimax optimal with respect to the scaling of |S|, |A|, and ε. In contrast to literature on linear and low-rank MDPs, we do not require a known feature mapping, our algorithm is computationally simple, and our results hold for long time horizons. Our results provide insights on the minimal low-rank structural assumptions required on the MDP with respect to the transition kernel versus the optimal action-value function. 
    more » « less
  5. null (Ed.)
    Learning to plan for long horizons is a central challenge in episodic reinforcement learning problems. A fundamental question is to understand how the difficulty of the problem scales as the horizon increases. Here the natural measure of sample complexity is a normalized one: we are interested in the \emph{number of episodes} it takes to provably discover a policy whose value is eps near to that of the optimal value, where the value is measured by the \emph{normalized} cumulative reward in each episode. In a COLT 2018 open problem, Jiang and Agarwal conjectured that, for tabular, episodic reinforcement learning problems, there exists a sample complexity lower bound which exhibits a polynomial dependence on the horizon --- a conjecture which is consistent with all known sample complexity upper bounds. This work refutes this conjecture, proving that tabular, episodic reinforcement learning is possible with a sample complexity that scales only \emph{logarithmically} with the planning horizon. In other words, when the values are appropriately normalized (to lie in the unit interval), this results shows that long horizon RL is no more difficult than short horizon RL, at least in a minimax sense. Our analysis introduces two ideas: (i) the construction of an eps-net for near-optimal policies whose log-covering number scales only logarithmically with the planning horizon, and (ii) the Online Trajectory Synthesis algorithm, which adaptively evaluates all policies in a given policy class and enjoys a sample complexity that scales logarithmically with the cardinality of the given policy class. Both may be of independent interest. 
    more » « less