The next evolutionary step in biological signal monitoring will be enabled by wireless communication. Low power and cost-efficient wireless transceivers are currently being employed for implantable medical devices (IMDs), in addition to military and civilian applications such as monitoring, surveillance, and home automation. The major goal of this paper is to do a thorough and realistic link budget analysis for an implantable wireless transceiver operating in the 3–5 GHz ultrawideband frequency with a link distance of 2 m (which includes 10 mm of brain tissue layer and 1.99 m of air medium), data rate of 100 Mbps with On-Off keying (OOK) modulation, and a minimum receiver sensitivity of −58.01 dBm. The proposed power budget analysis is particularly well suited for distributed brain implant applications as it models the path loss including the tissue layer without compromising the spectrum regulation imposed by the Federal Communications Commission (FCC) for UWB communication. 
                        more » 
                        « less   
                    
                            
                            Pushing the Physical Limits of IoT Devices with Programmable Metasurfaces
                        
                    
    
            Small, low-cost IoT devices are typically equipped with only a single, low-quality antenna, significantly limiting communication range and link quality. In particular, these antennas are typically linearly polarized and therefore susceptible to polarization mismatch, which can easily cause 10-15 dBm of link loss on communication to and from such devices. In this work, we highlight this under-appreciated issue and propose the augmentation of IoT deployment environments with programmable, RF-sensitive surfaces made of metamaterials. Our smart meta-surface mitigates polarization mismatch by rotating the polarization of signals that pass through or reflect off the surface. We integrate our metasurface into an IoT network as LLAMA, a Low-power Lattice of Actuated Metasurface Antennas, designed for the pervasively used 2.4 GHz ISM band. We optimize LLAMA’s metasurface design for both low transmission loss and low cost, to facilitate deployment at scale. We then build an end-to-end system that actuates the metasurface structure to optimize for link performance in real time. Our experimental prototype-based evaluation demonstrates gains in link power of up to 15 dBm, and wireless capacity improvements of 100 and 180 Kbit/s/Hz in through-surface and surface-reflective scenarios, respectively, attributable to the polarization rotation properties of LLAMA’s metasurface. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10177065
- Date Published:
- Journal Name:
- Proceedings of the USENIX NSDI Symposium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The proliferation of low-end low-power internet-of-things (IoT) devices in smart environments necessitates secure identification and authentication of these devices via low-overhead fingerprinting methods. Previous work typically utilizes characteristics of the device's wireless modulation (WiFi, BLE, etc.) in the spectrum, or more recently, electromagnetic emanations from the device's DRAM to perform fingerprinting. The problem is that many devices, especially low-end IoT/embedded systems, may not have transmitter modules, DRAM, or other complex components, therefore making fingerprinting infeasible or challenging. To address this concern, we utilize electromagnetic emanations derived from the processor's clock to fingerprint. We present Digitus, an emanations-based fingerprinting system that can authenticate IoT devices at range. The advantage of Digitus is that we can authenticate low-power IoT devices using features intrinsic to their normal operation without the need for additional transmitters and/or other complex components such as DRAM. Our experiments demonstrate that we achieve ≥ 95% accuracy on average, applicability in a wide range of IoT scenarios (range ≥ 5m, non-line-of-sight, etc.), as well as support for IoT applications such as finding hidden devices. Digitus represents a low-overhead solution for the authentication of low-end IoT devices.more » « less
- 
            Wireless protocol design for IoT networks is an active area of research which has seen significant interest and developments in recent years. The research community is however handicapped by the lack of a flexible, easily deployable platform for prototyping IoT endpoints that would allow for ground up protocol development and investigation of how such protocols perform at scale. We introduce tinySDR, the first software-defined radio platform tailored to the needs of power-constrained IoT endpoints. TinySDR provides a standalone, fully programmable low power software-defined radio solution that can be duty cycled for battery operation like a real IoT endpoint, and more importantly, can be programmed over the air to allow for large scale deployment. We present extensive evaluation of our platform showing it consumes as little as 30 uW of power in sleep mode, which is 10,000x lower than existing SDR platforms. We present two case studies by implementing LoRa and BLE beacons on the platform and achieve sensitivities of -126 dBm and -94 dBm respectively while consuming 11% and 3% of the FPGA resources. Finally, using tinySDR, we explore the research question of whether an IoT device can demodulate concurrent LoRa transmissions in real-time, within its power and computing constraints.more » « less
- 
            Non-volatile radio-frequency (RF) switches based on hexagonal boron nitride (hBN) are realized for the first time with low insertion loss (≤ 0.2 dB) and high isolation (≥ 15 dB) up to 110 GHz. Crystalline hBN enables the thinnest RF switch device with a single monolayer (~0.33 nm) as the memory layer owing to its robust layered structure. It affords ~20 dBm power handling, 10 dB higher compared to MoS 2 switches due to its wider bandgap (~6 eV). Importantly, operating frequencies cover the RF, 5G, and mm-wave bands, making this a promising low-power switch for diverse communication and connectivity front-end systems. Compared to other switch technologies based on MEMS, memristor, and phase-change memory (PCM), hBN switches offer a promising combination of non-volatility, nanosecond switching, power handling, high figure-of-merit cutoff frequency (43 THz), and heater-less ambient integration. Our pioneering work suggests that atomically-thin nanomaterials can be good device candidates for 5G and beyond.more » « less
- 
            Internet-of-things (IoT) devices (e.g., micro camera and microphone) are usually small form factor, low-cost, and low-power, which makes them easy to conceal and deploy in the indoor environment to spy on people for human private information such as location and indoor activities. As a result, these IoT devices introduce a great privacy and ethical threat. Therefore, it is important to reveal these concealed IoT devices in the indoor environment for human privacy protection. This paper presents RFScan, a system that can passively detect, fingerprint, and localize diverse concealed IoT devices in the indoor environment by sensing their unintentional electromagnetic emanations. However, sensing these emanations is challenging due to the weak emanation strength and the interference from the ambient wireless communication signals. To this end, we boost the emanation strength through the non-coherent averaging based on the emanation signal's characteristics and design a novel suppression algorithm to mitigate interference from the wireless communication signals. We further profile emanations across frequency and time that act as the emanation source's unique signature and customize a deep neural network architecture to fingerprint the emanation sources. Furthermore, we can localize the emanation source with an angle-of-arrival (AoA) based triangulation approach. Our experimental results demonstrate the efficiency of the IoT devices' detection, fingerprinting, and localization across different indoor environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    