Billions of devices in the Internet of Things (IoT) are inter-connected over the internet and communicate with each other or end users. IoT devices communicate through messaging bots. These bots are important in IoT systems to automate and better manage the work flows. IoT devices are usually spread across many applications and are able to capture or generate substantial influx of big data. The integration of IoT with cloud computing to handle and manage big data, requires considerable security measures in order to prevent cyber attackers from adversarial use of such large amount of data. An attacker can simply utilize the messaging bots to perform malicious activities on a number of devices and thus bots pose serious cybersecurity hazards for IoT devices. Hence, it is important to detect the presence of malicious bots in the network. In this paper we propose an evidence theory-based approach for malicious bot detection. Evidence Theory, a.k.a. Dempster Shafer Theory (DST) is a probabilistic reasoning tool and has the unique ability to handle uncertainty, i.e. in the absence of evidence. It can be applied efficiently to identify a bot, especially when the bots have dynamic or polymorphic behavior. The key characteristic of DST is that the detection system may not need any prior information about the malicious signatures and profiles. In this work, we propose to analyze the network flow characteristics to extract key evidence for bot traces. We then quantify these pieces of evidence using apriori algorithm and apply DST to detect the presence of the bots. 
                        more » 
                        « less   
                    
                            
                            What time is it: managing time in the internet
                        
                    
    
            In this paper, we report on our investigation of how current local time is reported accurately by devices connected to the internet. We describe the basic mechanisms for time management and focus on a critical but unstudied aspect of managing time on connected devices: the time zone database (TZDB). Our longitudinal analysis of the TZDB highlights how internet time has been managed by a loose confederation of contributors over the past 25 years. We drill down on details of the update process, update types and frequency, and anomalies related to TZDB updates. We find that 76% of TZDB updates include changes to the Daylight Saving Time (DST) rules, indicating that DST has a significant influence on internet-based time keeping. We also find that about 20% of updates were published within 15 days or less from the date of effect, indicating the potential for instability in the system. We also consider the security aspects of time management and identify potential vulnerabilities. We conclude with a set of proposals for enhancing TZDB management and reducing vulnerabilities in the system. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1703592
- PAR ID:
- 10177232
- Date Published:
- Journal Name:
- Proceedings of the ACM/IRTF/ISOC Applied Networking Research Workshop
- Page Range / eLocation ID:
- 37 to 44
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            As consumers adopt new Internet-connected devices, apps, and other software, they are often exposed to security and privacy vulnerabilities that they likely do not have time, exper- tise, or incentive to evaluate themselves. Can professionals and institutions help by evaluating the security and privacy of these products on behalf of consumers? As a first step, we interview product reviewers about their work, specifically whether and how they incorporate security and privacy. To inform our interview design, we conduct content analysis on published product reviews to identify security- or privacy-relevant content.more » « less
- 
            In recent years, there has been a growing interest in so-called smart cities. These cities use technology to connect and enhance the lives of their citizens. Smart cities use many Internet of Things (loT) devices, such as sensors and video cameras, that are interconnected to provide constant feedback and up-to-date information on everything that is happening. Despite the benefits of these cities, they introduce a numerous new vulnerabilities as well. These smart cities are now susceptible to cyber-attacks that aim to “alter, disrupt, deceive, degrade, or destroy computer systems.” Through the use of an educational and research-based loT test-bed with multiple networking layers and heterogeneous devices connected to simultaneously support networking research, anomaly detection, and security principles, we can pinpoint some of these vulnerabilities. This work will contribute potential solutions to these vulnerabilities that can hopefully be replicated in smart cities around the world. Specifically, in the transportation section of our educational smart city several vulnerabilities in the signal lights, street lights, and the cities train network were discovered. To conduct this research two scenarios were developed. These consisted of inside the network security and network perimeter security. For the latter we were able to find extensive vulnerabilities that would allow an attacker to map the entire smart city sub-network. Solutions to this problem are outlined that utilize an Intrusion Detection System and Port Mirroring. However, while we were able to exploit the city's Programmable Logic Controller (PLC) once inside the network, it was found that due to dated Supervisory Control and Data Acquisition (SCADA) systems, there were almost no solutions to these exploits.more » « less
- 
            The Internet of Things (IoT) are paradigm shift transforming embedded objects into a smart connected device, ready to sense, analyze and communicate information with other devices. Nowadays, IoT devices are widely used in smart home systems and smart grid systems at a high level of integration and automation. However, the increasing tendency of the smart device also leads to a problem of security. The recent exploitations of the connected smart devices’ vulnerabilities reinforce the importance of security implementation and integration at the system level. In this work, we propose some use cases to show the vulnerability of the smart bulb to different attacks.more » « less
- 
            A source generates time-stamped update packets that are sent to a server and then forwarded to a monitor. This occurs in the presence of an adversary that can infer information about the source by observing the output process of the server. The server wishes to release updates in a timely way to the monitor but also wishes to minimize the information leaked to the adversary. We analyze the trade-off between the age of information (AoI) and the maximal leakage for systems in which the source generates updates as a Bernoulli process. For a time slotted system in which sending an update requires one slot, we consider three server policies: (1) Memoryless with Bernoulli Thinning (MBT): arriving updates are queued with some probability and head-of-line update is released after a geometric holding time; (2) Deterministic Accumulate-and-Dump (DAD): the most recently generated update (if any) is released after a fixed time; (3) Random Accumulate-and-Dump (RAD): the most recently generated update (if any) is released after a geometric waiting time. We show that for the same maximal leakage rate, the DAD policy achieves lower age compared to the other two policies but is restricted to discrete age-leakage operating points.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    