Future real-time applications like smart cities will use complex Machine Learning (ML) models for a variety of tasks. Timely status information is required for these applications to be reliable. Offloading computation to a mobile edge cloud (MEC) can reduce the completion time of these tasks. However, using the MEC may come at a cost such as related to use of a cloud service or privacy. In this paper, we consider a source that generates time-stamped status updates for delivery to a monitor after processing by the mobile device or MEC. We study how a scheduler must forward these updates to achieve timely updates at the monitor but also limit MEC usage. We measure timeliness at the monitor using the age of information (AoI) metric. We formulate this problem as an infinite horizon Markov decision process (MDP) with an average cost criterion. We prove that an optimal scheduling policy has an age-threshold structure that depends on how long an update has been in service.
more »
« less
Privacy Leakage in Discrete-Time Updating Systems
A source generates time-stamped update packets that are sent to a server and then forwarded to a monitor. This occurs in the presence of an adversary that can infer information about the source by observing the output process of the server. The server wishes to release updates in a timely way to the monitor but also wishes to minimize the information leaked to the adversary. We analyze the trade-off between the age of information (AoI) and the maximal leakage for systems in which the source generates updates as a Bernoulli process. For a time slotted system in which sending an update requires one slot, we consider three server policies: (1) Memoryless with Bernoulli Thinning (MBT): arriving updates are queued with some probability and head-of-line update is released after a geometric holding time; (2) Deterministic Accumulate-and-Dump (DAD): the most recently generated update (if any) is released after a fixed time; (3) Random Accumulate-and-Dump (RAD): the most recently generated update (if any) is released after a geometric waiting time. We show that for the same maximal leakage rate, the DAD policy achieves lower age compared to the other two policies but is restricted to discrete age-leakage operating points.
more »
« less
- PAR ID:
- 10389923
- Date Published:
- Journal Name:
- 2022 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 2076 to 2081
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper studies the “age of information” (AoI) in a multi-source status update system where N active sources each send updates of their time-varying process to a monitor through a server with packet delivery errors. We analyze the average AoI for stationary randomized and round-robin scheduling policies. For both of these scheduling policies, we further analyze the effect of packet retransmission policies, i.e., retransmission without re- sampling, retransmission with resampling, or no retransmission, when errors occur. Expressions for the average AoI are derived for each case. It is shown that the round-robin schedule policy in conjunction with retransmission with resampling when errors occur achieves the lowest average AoI among the considered cases. For stationary randomized schedules with equiprobable source selection, it is further shown that the average AoI gap to round-robin schedules with the same packet management policy scales as O(N). Finally, for stationary randomized policies, the optimal source selection probabilities that minimize a weighted sum average AoI metric are derived.more » « less
-
A source submits status update jobs to a service fa- cility for processing and delivery to a monitor. The status updates belong to service classes with different service requirements. We model the service requirements using a hyperexponential service time model. To avoid class-specific bias in the service process, the system implements an M/G/1/1 blocking queue; new arrivals are discarded if the server is busy. Using an age-of-information (AoI) metric to characterize timeliness of the updates, a stochastic hybrid system (SHS) approach is employed to derive the overall average AoI and the average AoI for each service class. We observe that both the overall AoI and class-specific AoI share a common penalty that is a function of the second moment of the average service time and they differ chiefly because of their different arrival rates. We show that each high-probability service class has an associated age-optimal update arrival rate while low- probability service classes incur an average age that is always decreasing in the update arrival rate.more » « less
-
A source node forwards fresh status updates as a point process to a network of observer nodes. Within the network of observers, these updates are forwarded as point processes from node to node. Each node wishes its knowledge of the source to be as timely as possible. In this network, timeliness at each node is measured by an age of information metric: how old is the timestamp of the freshest received update. This work extends a method for evaluating the average age at each node in the network when nodes forward updates using a memoryless gossip protocol. This method is then demonstrated by age analysis for a simple network.more » « less
-
The notion of timely status updating is investigated in the context of cloud computing. Measurements of a time-varying process of interest are acquired by a sensor node, and uploaded to a cloud server to undergo some required computations. These computations have random service times that are independent and identically distributed across different uploads. After the computations are done, the results are delivered to a monitor, constituting an update. The goal is to keep the monitor continuously fed with fresh updates over time, which is assessed by an age-of-information(AoI) metric. A scheduler is employed to optimize the measurement acquisition times. Following an update, an idle waiting period may be imposed by the scheduler before acquiring a new measurement. The scheduler also has the capability to preempt a measurement in progress if its service time grows above a certain cutoff time, and upload a fresher measurement in its place. Focusing on stationary deterministic policies, in which waiting times are deterministic functions of the instantaneous AoI and the cutoff time is fixed for all uploads, it is shown that the optimal waiting policy that minimizes the long term average AoI has a threshold structure, in which a new measurement is uploaded following an update only if the AoI grows above a certain threshold that is a function of the service time distribution and the cutoff time. The optimal cutoff is then found for standard and shifted exponential service times. While it has been previously reported that waiting before updating can be beneficial for AoI, it is shown in this work that preemption of late updates can be even more beneficial.more » « less
An official website of the United States government

