skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Line-Graph Lattices: Euclidean and Non-Euclidean Flat Bands, and Implementations in Circuit Quantum Electrodynamics
Award ID(s):
1802211
PAR ID:
10177404
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Communications in Mathematical Physics
ISSN:
0010-3616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We explore upper bounds on Kantorovich transport distances between probability measures on the Euclidean spaces in terms of their Fourier-Stieltjes transforms, with focus on non-Euclidean metrics. The results are illustrated on empirical measures in the optimal matching problem on the real line. 
    more » « less
  2. Mutzel, Petra; Pagh, Rasmus; Herman, Grzegorz (Ed.)
  3. Abstract We introduce $$\varepsilon $$ -approximate versions of the notion of a Euclidean vector bundle for $$\varepsilon \geq 0$$ , which recover the classical notion of a Euclidean vector bundle when $$\varepsilon = 0$$ . In particular, we study Čech cochains with coefficients in the orthogonal group that satisfy an approximate cocycle condition. We show that $$\varepsilon $$ -approximate vector bundles can be used to represent classical vector bundles when $$\varepsilon> 0$$ is sufficiently small. We also introduce distances between approximate vector bundles and use them to prove that sufficiently similar approximate vector bundles represent the same classical vector bundle. This gives a way of specifying vector bundles over finite simplicial complexes using a finite amount of data and also allows for some tolerance to noise when working with vector bundles in an applied setting. As an example, we prove a reconstruction theorem for vector bundles from finite samples. We give algorithms for the effective computation of low-dimensional characteristic classes of vector bundles directly from discrete and approximate representations and illustrate the usage of these algorithms with computational examples. 
    more » « less