skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Bipolar, Tripolar, and Quadripolar Laplacian Estimates of Electrocardiogram via Concentric Ring Electrodes
Surface Laplacian estimates via concentric ring electrodes (CREs) have proven to enhance spatial resolution compared to conventional disc electrodes, which is of great importance for P-wave analysis. In this study, Laplacian estimates for traditional bipolar configuration (BC), two tripolar configurations with linearly decreasing and increasing inter-ring distances (TCLDIRD and TCLIIRD, respectively), and quadripolar configuration (QC) were obtained from cardiac recordings with pentapolar CREs placed at CMV1 and CMV2 positions. Normalized P-wave amplitude (NAP) was computed to assess the contrast to study atrial activity. Signals were of good quality (20–30 dB). Atrial activity was more emphasized at CMV1 (NAP ≃ 0.19–0.24) compared to CMV2 (NAP ≃ 0.08–0.10). Enhanced spatial resolution of TCLIIRD and QC resulted in higher NAP values than BC and TCLDIRD. Comparison with simultaneous standard 12-lead ECG proved that Laplacian estimates at CMV1 outperformed all the limb and chest standard leads in the contrast to study P-waves. Clinical recordings with CRE at this position could allow more detailed observation of atrial activity and facilitate the diagnosis of associated pathologies. Furthermore, such recordings would not require additional electrodes on limbs and could be performed wirelessly, so it should also be suitable for ambulatory monitoring, for example, using cardiac Holter monitors.  more » « less
Award ID(s):
1914787 1622481
PAR ID:
10177435
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
19
Issue:
17
ISSN:
1424-8220
Page Range / eLocation ID:
3780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Concentric ring electrodes (CREs) allow improved spatial resolution, reduced crosstalk and interference, and increased bandwidth in the sensing of bioelectrical activity. A wide variety of designs have been used, but their selection is rarely well-founded. The aim of this work is to assess the implications of aspects of CRE design such as the distance between poles, their width and their maximum diameter on aspects such as the signal amplitude (and, therefore, quality), Laplacian estimation error and spatial selectivity (SS). For this purpose, a finite dimensional model of the CRE was used, and its response to the activity of an electric dipole of variable depth was simulated via finite element method modeling. Our results show that increasing the electrode size increases the error to a greater extent than the signal amplitude increases. Pole widths should be as small as possible. The middle ring of the tripolar CRE should be as far away as possible from the central disc. Tripolar CREs typically outperform bipolar CREs of the same outer diameter, significantly reducing the Laplacian estimation error and improving the SS at the cost of a small decrease in signal amplitude. Our results also show that the design of current commercial versions of CREs can be optimized. Furthermore, we propose a methodology that facilitates the selection of an adequate CRE configuration based on the specifications for CRE performance and practical aspects, such as the depth of activity sources to be recorded from and/or the maximum size of electrodes to be used. The monitoring and analysis of bioelectrical signals in a wide range of applications can benefit from the enhanced electrode design and methodology proposed in this work. 
    more » « less
  2. The optimization performed in this study is based on the finite dimensions model of the concentric ring electrode as opposed to the negligible dimensions model used in the past. This makes the optimization problem comprehensive, as all of the electrode parameters including, for the first time, the radius of the central disc and individual widths of concentric rings, are optimized simultaneously. The optimization criterion used is maximizing the accuracy of the surface Laplacian estimation, as the ability to estimate the Laplacian at each electrode constitutes primary biomedical significance of concentric ring electrodes. For tripolar concentric ring electrodes, the optimal configuration was compared to previously proposed linearly increasing inter-ring distances and constant inter-ring distances configurations of the same size and based on the same finite dimensions model. The obtained analytic results suggest that previously proposed configurations correspond to almost two-fold and more than three-fold increases in the Laplacian estimation error compared with the optimal configuration proposed in this study, respectively. These analytic results are confirmed using finite element method modeling, which was adapted to the finite dimensions model of the concentric ring electrode for the first time. Moreover, the finite element method modeling results suggest that optimal electrode configuration may also offer improved sensitivity and spatial resolution. 
    more » « less
  3. Concentric ring electrodes are noninvasive and wearable sensors for electrophysiological measurement capable of estimating the surface Laplacian (second spatial derivative of surface potential) at each electrode. Significant progress has been made toward optimization of inter-ring distances (distances between the recording surfaces of the electrode), maximizing the accuracy of the surface Laplacian estimate based on the negligible dimensions model of the electrode. However, novel finite dimensions model offers comprehensive optimization including all of the electrode parameters simultaneously by including the radius of the central disc and the widths of the concentric rings into the model. Recently, such comprehensive optimization problem has been solved analytically for the tripolar electrode configuration. This study, for the first time, introduces a finite dimensions model based finite element method model (as opposed to the negligible dimensions model based one used in the past) to confirm the analytic results. Specifically, finite element method modeling results confirmed that previously proposed linearly increasing inter-ring distances and constant inter-ring distances configurations of tripolar concentric ring electrodes correspond to an almost two-fold and more than three-fold increases in relative and normalized maximum errors of Laplacian estimation when directly compared to the optimal tripolar concentric ring electrode configuration of the same size. 
    more » « less
  4. Falcone, Francisco (Ed.)
    Concentric ring electrodes are showing promise in noninvasive electrophysiological measurement but electrode design criteria are rarely detailed and justified. Toward that goal, the use of realistic finite dimensions model of concentric ring electrode in this study was two-fold. First, it was used to optimize the surface Laplacian estimate coefficients for tripolar electrode configuration with dimensions approximating the commercially available t-Lead electrodes manufactured by CREmedical. Two differential signals representing differences between potentials on the middle ring and on the central disc as well as on the outer ring and on the central disc are combined linearly into the Laplacian estimate with aforementioned coefficients representing the weights of differential signals. Second, it was used to directly compare said tripolar configuration to the optimal tripolar concentric ring electrode configuration of the same size via finite element method modeling based computation of relative and normalized maximum errors of Laplacian estimation. Obtained results suggest the optimal coefficients for Laplacian estimate based on the approximation of the t-Lead dimensions to be (6, -1) as opposed to (16, -1) widely used with this electrode in the past. Moreover, compared to the optimal tripolar concentric ring electrode configuration, commercially available tripolar electrode of the same size leads to a median increase in Laplacian estimation errors of over 4 times. These results are consistent with previously obtained results based on both negligible and finite dimensions models but further investigation on real life phantom and human data via physical concentric ring electrode prototypes is needed for conclusive proof. 
    more » « less
  5. Introduction: Many studies in mice have demonstrated that cardiac-specific innate immune signaling pathways can be reprogrammed to modulate inflammation in response to myocardial injury and improve outcomes. While the echocardiography standard parameters of left ventricular (LV) ejection fraction, fractional shortening, end-diastolic diameter, and others are used to assess cardiac function, their dependency on loading conditions somewhat limits their utility in completely reflecting the contractile function and global cardiovascular efficiency of the heart. A true measure of global cardiovascular efficiency should include the interaction between the ventricle and the aorta (ventricular-vascular coupling, VVC) as well as measures of aortic impedance and pulse wave velocity. Methods: We measured cardiac Doppler velocities, blood pressures, along with VVC, aortic impedance, and pulse wave velocity to evaluate global cardiac function in a mouse model of cardiac-restricted low levels of TRAF2 overexpression that conferred cytoprotection in the heart. Results: While previous studies reported that response to myocardial infarction and reperfusion was improved in the TRAF2 overexpressed mice, we found that TRAF2 mice had significantly lower cardiac systolic velocities and accelerations, diastolic atrial velocity, aortic pressures, rate-pressure product, LV contractility and relaxation, and stroke work when compared to littermate control mice. Also, we found significantly longer aortic ejection time, isovolumic contraction and relaxation times, and significantly higher mitral early/atrial ratio, myocardial performance index, and ventricular vascular coupling in the TRAF2 overexpression mice compared to their littermate controls. We found no significant differences in the aortic impedance and pulse wave velocity. Discussion: While the reported tolerance to ischemic insults in TRAF2 overexpression mice may suggest enhanced cardiac reserve, our results indicate diminished cardiac function in these mice. 
    more » « less