skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Information-Theoretic Quantification of Discrimination with Exempt Features
The needs of a business (e.g., hiring) may require the use of certain features that are critical in a way that any discrimination arising due to them should be exempted. In this work, we propose a novel information-theoretic decomposition of the total discrimination (in a counterfactual sense) into a non-exempt component, which quantifies the part of the discrimination that cannot be accounted for by the critical features, and an exempt component, which quantifies the remaining discrimination. Our decomposition enables selective removal of the non-exempt component if desired. We arrive at this decomposition through examples and counterexamples that enable us to first obtain a set of desirable properties that any measure of non-exempt discrimination should satisfy. We then demonstrate that our proposed quantification of non-exempt discrimination satisfies all of them. This decomposition leverages a body of work from information theory called Partial Information Decomposition (PID). We also obtain an impossibility result showing that no observational measure of non-exempt discrimination can satisfy all of the desired properties, which leads us to relax our goals and examine alternative observational measures that satisfy only some of these properties. We then perform a case study using one observational measure to show how one might train a model allowing for exemption of discrimination due to critical features.  more » « less
Award ID(s):
1763561
PAR ID:
10177456
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
04
ISSN:
2159-5399
Page Range / eLocation ID:
3825 to 3833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Algorithmic fairness research has mainly focused on adapting learning models to mitigate discrimination based on protected attributes, yet understanding inherent biases in training data remains largely unexplored. Quantifying these biases is crucial for informed data engineering, as data mining and model development often occur separately. We address this by developing an information-theoretic framework to quantify the marginal impacts of dataset features on the discrimination bias of downstream predictors. We postulate a set of desired properties for candidate discrimination measures and derive measures that (partially) satisfy them. Distinct sets of these properties align with distinct fairness criteria like demographic parity or equalized odds, which we show can be in disagreement and not simultaneously satisfied by a single measure. We use the Shapley value to determine individual features’ contributions to overall discrimination, and prove its effectiveness in eliminating redundancy. We validate our measures through a comprehensive empirical study on numerous real-world and synthetic datasets. For synthetic data, we use a parametric linear structural causal model to generate diverse data correlation structures. Our analysis provides empirically validated guidelines for selecting discrimination measures based on data conditions and fairness criteria, establishing a robust framework for quantifying inherent discrimination bias in data 
    more » « less
  2. null (Ed.)
    The measures of information transfer which correspond to non-additive entropies have intensively been studied in previous decades. The majority of the work includes the ones belonging to the Sharma–Mittal entropy class, such as the Rényi, the Tsallis, the Landsberg–Vedral and the Gaussian entropies. All of the considerations follow the same approach, mimicking some of the various and mutually equivalent definitions of Shannon information measures, and the information transfer is quantified by an appropriately defined measure of mutual information, while the maximal information transfer is considered as a generalized channel capacity. However, all of the previous approaches fail to satisfy at least one of the ineluctable properties which a measure of (maximal) information transfer should satisfy, leading to counterintuitive conclusions and predicting nonphysical behavior even in the case of very simple communication channels. This paper fills the gap by proposing two parameter measures named the α-q-mutual information and the α-q-capacity. In addition to standard Shannon approaches, special cases of these measures include the α-mutual information and the α-capacity, which are well established in the information theory literature as measures of additive Rényi information transfer, while the cases of the Tsallis, the Landsberg–Vedral and the Gaussian entropies can also be accessed by special choices of the parameters α and q. It is shown that, unlike the previous definition, the α-q-mutual information and the α-q-capacity satisfy the set of properties, which are stated as axioms, by which they reduce to zero in the case of totally destructive channels and to the (maximal) input Sharma–Mittal entropy in the case of perfect transmission, which is consistent with the maximum likelihood detection error. In addition, they are non-negative and less than or equal to the input and the output Sharma–Mittal entropies, in general. Thus, unlike the previous approaches, the proposed (maximal) information transfer measures do not manifest nonphysical behaviors such as sub-capacitance or super-capacitance, which could qualify them as appropriate measures of the Sharma–Mittal information transfer. 
    more » « less
  3. Assuming the Riemann Hypothesis (RH), Montgomery proved a theorem concerning pair correlation of zeros of the Riemann zeta-function. One consequence of this theorem is that, assuming RH, at least 67.9% of the nontrivial zeros are simple. Here we obtain an unconditional form of Montgomery’s theorem and show how to apply it to prove the following result on simple zeros: If all the zeros ρ=β+iγ of the Riemann zeta-function such that T3/8<γ≤T satisfy ∣∣β−1/2∣∣<1/(2logT), then, as T tends to infinity, at least 61.7% of these zeros are simple. The method of proof neither requires nor provides any information on whether any of these zeros are or are not on the critical line where β=1/2. We also obtain the same result under the weaker assumption of a strong zero-density hypothesis. 
    more » « less
  4. Abstract. In magnetospheric missions, burst-mode data sampling should be triggered in the presence of processes of scientific or operational interest. We present an unsupervised classification method for magnetospheric regions that could constitute the first step of a multistep method for the automatic identification of magnetospheric processes of interest. Our method is based on self-organizing maps (SOMs), and we test it preliminarily on data points from global magnetospheric simulations obtained with the OpenGGCM-CTIM-RCM code. The dimensionality of the data is reduced with principal component analysis before classification. The classification relies exclusively on local plasma properties at the selected data points, without information on their neighborhood or on their temporal evolution. We classify the SOM nodes into an automatically selected number of classes, and we obtain clusters that map to well-defined magnetospheric regions. We validate our classification results by plotting the classified data in the simulated space and by comparing with k-means classification. For the sake of result interpretability, we examine the SOM feature maps (magnetospheric variables are called features in the context of classification), and we use them to unlock information on the clusters. We repeat the classification experiments using different sets of features, we quantitatively compare different classification results, and we obtain insights on which magnetospheric variables make more effective features for unsupervised classification. 
    more » « less
  5. Andersen, Masbaum and Ueno conjectured that certain quantum representations of surface mapping class groups should send pseudo-Anosov mapping classes to elements of infinite order (for large enough level r). In this paper, we relate the AMU conjecture to a question about the growth of the Turaev-Viro invariants TVr of hyperbolic 3-manifolds. We show that if the r-growth of |TVr(M)| for a hyperbolic 3-manifold M that fibers over the circle is exponential, then the monodromy of the fibration of M satisfies the AMU conjecture. Building on earlier work \cite{DK} we give broad constructions of (oriented) hyperbolic fibered links, of arbitrarily high genus, whose SO(3)-Turaev-Viro invariants have exponential r-growth. As a result, for any g>n⩾2, we obtain infinite families of non-conjugate pseudo-Anosov mapping classes, acting on surfaces of genus g and n boundary components, that satisfy the AMU conjecture. We also discuss integrality properties of the traces of quantum representations and we answer a question of Chen and Yang about Turaev-Viro invariants of torus links. 
    more » « less