skip to main content

Title: Spatial Life Cycle Analysis of Soybean-Based Biodiesel Production in Indiana, USA Using Process Modeling
Life Cycle Analysis (LCA) has long been utilized for decision making about the sustainability of products. LCA provides information about the total emissions generated for a given functional unit of a product, which is utilized by industries or consumers for comparing two products with regards to environmental performance. However, many existing LCAs utilize data that is representative of an average system with regards to life cycle stage, thus providing an aggregate picture. It has been shown that regional variation may lead to large variation in the environmental impacts of a product, specifically dealing with energy consumption, related emissions and resource consumptions. Hence, improving the reliability of LCA results for decision making with regards to environmental performance needs regional models to be incorporated for building a life cycle inventory that is representative of the origin of products from a certain region. In this work, we present the integration of regionalized data from process systems models and other sources to build regional LCA models and quantify the spatial variations per unit of biodiesel produced in the state of Indiana for environmental impact. In order to include regional variation, we have incorporated information about plant capacity for producing biodiesel from North and Central more » Indiana. The LCA model built is a cradle-to-gate. Once the region-specific models are built, the data were utilized in SimaPro to integrate with upstream processes to perform a life cycle impact assessment (LCIA). We report the results per liter of biodiesel from northern and central Indiana facilities in this work. The impact categories studied were global warming potential (kg CO2 eq) and freshwater eutrophication (kg P eq). While there were a lot of variations at individual county level, both regions had a similar global warming potential impact and the northern region had relatively lower eutrophication impacts. « less
Authors:
;
Award ID(s):
1805741
Publication Date:
NSF-PAR ID:
10177536
Journal Name:
Processes
Volume:
8
Issue:
4
Page Range or eLocation-ID:
392
ISSN:
2227-9717
Sponsoring Org:
National Science Foundation
More Like this
  1. Life cycle assessment (LCA), a tool used to assess the environmental impacts of products and processes, has been used to evaluate a range of aquaculture systems. Eighteen LCA studies were reviewed which included assess- ments of recirculating aquaculture systems (RAS), flow-through systems, net cages, and pond systems. This re- view considered the potential to mitigate environmental burdens with a movement from extensive to intensive aquaculture systems. Due to the diversity in study results, specific processes (feed, energy, and infrastructure) and specific impact categories (land use, water use, and eutrophication potential) were analyzed in-depth. The comparative analysis indicated there was a possible shift from local to global impacts with a progression from extensive to intensive systems, if mitigation strategies were not performed. The shift was partially due to increased electricity requirements but also varied with electricity source. The impacts from infrastructure were less than 13 % of the environmental impact and considered negligible. For feed, the environmental impacts were typically more dependent on feed conversion ratio (FCR) than the type of system. Feed also contributed to over 50 % of the impacts on land use, second only to energy carriers. The analysis of water use indicated intensive recirculating systems efficiently reducemore »water use as compared to extensive systems; however, at present, studies have only considered direct water use and future work is required that incorporates indirect and consumptive water use. Alternative aquaculture systems that can improve the total nutrient uptake and production yield per material and energy based input, thereby reducing the overall emissions per unit of feed, should be further investigated to optimize the overall of aquaculture systems, considering both global and local environmental impacts. While LCA can be a valuable tool to evaluate trade-offs in system designs, the results are often location and species specific. Therefore, it is critical to consider both of these criteria in conjunction with LCA results when developing aquaculture systems.« less
  2. The objective of this research is to evaluate the effects of cropping choices on land, water use for irrigation, and greenhouse gas emissions after introducing canola (Brassica napus L.) cultivation for the production of 60 million gallons of biodiesel per year. Characterization of regional farm-level cropping patterns and agronomic inputs and economic data are used to model the adoption of canola in place of the diverse incumbent cropping patterns in four regions of California: Northern and Southern San Joaquin Valleys, Sacramento Valley, and Southern California, using the Bioenergy Crop Adoption Model. The life cycle assessment approach is then used to assess environmental impacts due to cultivation of canola in place of the incumbent cropping patterns in terms of: (1) land use; (2) life-cycle greenhouse gas emissions due to direct land use change (kg CO2e ac-1); (3) greenhouse gas emissions due to irrigation water (kg CO2e ac-1); and (4) life-cycle greenhouse gas emissions expressed in grams of carbon dioxide equivalent per megajoule of biodiesel. Preliminary results show the adoption price of the canola with a yield of 1.5 U.S. tons per acre is estimated to be $481 per ton of canola in 2012 dollars at which point a total of 508,400more »acres appear in canola cultivation. This land area (508, 400 acres) is equivalent to approximately 89 million gallons of biodiesel from canola per year given the assumptions stated in this study. Consequentially, crops that are less profitable are replaced with canola and greenhouse gas emissions due to irrigation water are reduced while maintaining a diversified percentage of the incumbent cropping patterns, as well as canola cultivation.« less
  3. The objective of this research is to evaluate the effects of cropping choices on land, water use for irrigation, and greenhouse gas emissions after introducing canola (Brassica napus L.) cultivation for the production of 60 million gallons of biodiesel per year. Characterization of regional farm-level cropping patterns and agronomic inputs and economic data are used to model the adoption of canola in place of the diverse incumbent cropping patterns in four regions of California: Northern and Southern San Joaquin Valleys, Sacramento Valley, and Southern California, using the Bioenergy Crop Adoption Model. The life cycle assessment approach is then used to assess environmental impacts due to cultivation of canola in place of the incumbent cropping patterns in terms of: (1) land use; (2) life-cycle greenhouse gas emissions due to direct land use change (kg CO2e ac-1); (3) greenhouse gas emissions due to irrigation water (kg CO2e ac-1); and (4) life-cycle greenhouse gas emissions expressed in grams of carbon dioxide equivalent per megajoule of biodiesel. Preliminary results show the adoption price of the canola with a yield of 1.5 U.S. tons per acre is estimated to be $481 per ton of canola in 2012 dollars at which point a total of 508,400more »acres appear in canola cultivation. This land area (508, 400 acres) is equivalent to approximately 89 million gallons of biodiesel from canola per year given the assumptions stated in this study. Consequentially, crops that are less profitable are replaced with canola and greenhouse gas emissions due to irrigation water are reduced while maintaining a diversified percentage of the incumbent cropping patterns, as well as canola cultivation.« less
  4. Although vegetables are important for healthy diets, there are concerns about the sustainability of food systems that provide them. For example, half of fresh-market vegetables sold in the United States (US) are produced in California, leading to negative impacts associated with transportation. In Iowa, the focus of this study, 90% of food is imported from outside the state. Previous life cycle assessment (LCA) studies indicate that food consumption patterns affect global warming potential (GWP), with animal products having more negative impacts than vegetables. However, studies focused on how GWP, energy, and water use vary between food systems and vegetable types are less common. The purpose of this study was to examine these environmental impacts to inform decisions to buy locally or grow vegetables in the Midwest. We used a life cycle approach to examine three food systems (large-, mid-, and small-scale) and 18 vegetables commonly grown in/near Des Moines, Iowa. We found differences in GWP, energy, and water use (p ≤ 0.001 for each) for the three food systems with the large-scale scenario producing more emissions. There were also differences among vegetables, with the highest GWP for romaine lettuce (1.92 CO2eq/kg vegetable) approximately three times that of leaf lettuce (0.65more »CO2eq/kg vegetable) at the large scale. Hotspots and tradeoffs between GWP, energy, and water use were also identified and could inform vegetable production/consumption based on carbon and water use footprints for the US Midwest.« less
  5. The environmental sustainability of aquaculture food production systems is of critical concern due to its rapid expansion as the fastest growing major food production sector in the world. Among the parameters that con- tribute to the overall environmental impacts of aquaculture marine-based protein production, aquafeed is identified as an impact hotspot. There is consequently a need to seek more environmentally sustainable aqua- feeds to mitigate the adverse environmental impacts associated with aquaculture food production. The environmental and economic sustainability of aquafeeds can be improved using two main approaches: (a) optimizing finite resources use (e.g. fish meal and fish oil), and (b) mitigating waste generation and emissions. A variety of ingredients have been previously proposed, investigated, and utilized to accomplish these strategies, while maintaining acceptable food production efficiencies. However, comprehensive evaluation of the en- vironmental sustainability of aquafeeds with respect to variable ingredients, both in terms of resource use and waste emission has not been conducted. In this work, a holistic life cycle impact assessment of twelve practically formulated and utilized aquafeeds has been performed to provide a comparative evaluation of different aquafeed's environmental impacts, con- sidering resource use (biotic resource use, water intake, and fossil fuel depletion) and emission-based impactmore »categories (ozone depletion, global warming, photochemical smog, acidification, eutrophication, carcinogenics, non-carcinogenics, respiratory effects, and ecotoxicity). Results indicate that the investigated fish meal free diets do not, on the whole, result in a significant decrease in environmental impacts with respect to the use of biotic resources. However, if the substituted ingredients would not propose elevated impacts (e.g. blood meal), these diets can potentially lower the overall environmental impacts of aquafeed production mainly with respect to relevant emission-based indicators (e.g. global warming, eutrophication, ecotoxicity). Findings demonstrate that the investigated fish oil free diets can potentially lower the use of biotic resources. However, to prevent burden shifting, strategies to provide nutrient-rich oils with minimal energy requirement need to be undertaken.« less