 Award ID(s):
 1816934
 NSFPAR ID:
 10177607
 Date Published:
 Journal Name:
 Journal of Fluid Mechanics
 Volume:
 875
 ISSN:
 00221120
 Page Range / eLocation ID:
 1145 to 1174
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

The interaction of localised solitary waves with largescale, timevarying dispersive mean flows subject to nonconvex flux is studied in the framework of the modified Korteweg–de Vries (mKdV) equation, a canonical model for internal gravity wave propagation and potential vorticity fronts in stratified fluids. The effect of large amplitude, dynamically evolving mean flows on the propagation of localised waves – essentially ‘soliton steering’ by the mean flow – is considered. A recent theoretical and experimental study of this new type of dynamic soliton–mean flow interaction for convex flux has revealed two scenarios where the soliton either transmits through the varying mean flow or remains trapped inside it. In this paper, it is demonstrated that the presence of a nonconvex cubic hydrodynamic flux introduces significant modifications to the scenarios for transmission and trapping. A reduced set of Whitham modulation equations is used to formulate a general mathematical framework for soliton–mean flow interaction with nonconvex flux. Solitary wave trapping is stated in terms of crossing modulation characteristics. Nonconvexity and positive dispersion – common for stratified fluids – imply the existence of localised, sharp transition fronts (kinks). Kinks play dual roles as a mean flow and a wave, imparting polarity reversal to solitons and dispersive mean flows, respectively. Numerical simulations of the mKdV equation agree with modulation theory predictions. The mathematical framework developed is general, not restricted to completely integrable equations like mKdV, enabling application beyond the mKdV setting to other fluid dynamic contexts subject to nonconvex flux such as strongly nonlinear internal wave propagation that is prevalent in the ocean.more » « less

Abstract The interaction of an oblique line soliton with a onedimensional dynamic mean flow is analyzed using the Kadomtsev–Petviashvili II (KPII) equation. Building upon previous studies that examined the transmission or trapping of a soliton by a slowly varying rarefaction or oscillatory dispersive shock wave (DSW) in one space and one time dimension, this paper allows for the incident soliton to approach the changing mean flow at a nonzero oblique angle. By deriving invariant quantities of the soliton–mean flow modulation equations—a system of three (1 + 1)dimensional quasilinear, hyperbolic equations for the soliton and mean flow parameters—and positing the initial configuration as a Riemann problem in the modulation variables, it is possible to derive quantitative predictions regarding the evolution of the line soliton within the mean flow. It is found that the interaction between an oblique soliton and a changing mean flow leads to several novel features not observed in the (1 + 1)dimensional reduced problem. Many of these interesting dynamics arise from the unique structure of the modulation equations that are nonstrictly hyperbolic, including a welldefined multivalued solution interpreted as a solution of the (2 + 1)dimensional soliton–mean modulation equations, in which the soliton interacts with the mean flow and then wraps around to interact with it again. Finally, it is shown that the oblique interactions between solitons and DSW solutions for the mean flow give rise to all three possible types of twosoliton solutions of the KPII equation. The analytical findings are quantitatively supported by direct numerical simulations.more » « less

Abstract The mathematical description of localized solitons in the presence of large‐scale waves is a fundamental problem in nonlinear science, with applications in fluid dynamics, nonlinear optics, and condensed matter physics. Here, the evolution of a soliton as it interacts with a rarefaction wave or a dispersive shock wave, examples of slowly varying and rapidly oscillating dispersive mean fields, for the Korteweg–de Vries equation is studied. Step boundary conditions give rise to either a rarefaction wave (step up) or a dispersive shock wave (step down). When a soliton interacts with one of these mean fields, it can either transmit through (tunnel) or become embedded (trapped) inside, depending on its initial amplitude and position. A topical review of three separate analytical approaches is undertaken to describe these interactions. First, a basic soliton perturbation theory is introduced that is found to capture the solution dynamics for soliton–rarefaction wave interaction in the small dispersion limit. Next, multiphase Whitham modulation theory and its finite‐gap description are used to describe soliton–rarefaction wave and soliton–dispersive shock wave interactions. Lastly, a spectral description and an exact solution of the initial value problem is obtained through the inverse scattering transform. For transmitted solitons, far‐field asymptotics reveal the soliton phase shift through either type of wave mentioned above. In the trapped case, there is no proper eigenvalue in the spectral description, implying that the evolution does not involve a proper soliton solution. These approaches are consistent, agree with direct numerical simulation, and accurately describe different aspects of solitary wave–mean field interaction.

Abstract Dispersive shock waves (DSWs) of the defocusing radial nonlinear Schrödinger (rNLS) equation in two spatial dimensions are studied. This equation arises naturally in Bose‐Einstein condensates, water waves, and nonlinear optics. A unified nonlinear WKB approach, equally applicable to integrable or nonintegrable partial differential equations, is used to find the rNLS Whitham modulation equation system in both physical and hydrodynamic type variables. The description of DSWs obtained via Whitham theory is compared with direct rNLS numerics; the results demonstrate very good quantitative agreement. On the other hand, as expected, comparison with the corresponding DSW solutions of the one‐dimensional NLS equation exhibits significant qualitative and quantitative differences.

The generalized nonlinear Schr\"odinger equation with full dispersion (FDNLS) is considered in the semiclassical regime. The Whitham modulation equations are obtained for the FDNLS equation with general linear dispersion and a generalized, local nonlinearity. Assuming the existence of a fourparameter family of twophase solutions, a multiplescales approach yields a system of four independent, firstorder, quasilinear conservation laws of hydrodynamic type that correspond to the slow evolution of the two wavenumbers, mass, and momentum of modulated periodic traveling waves. The modulation equations are further analyzed in the dispersionless and weakly nonlinear regimes. The illposedness of the dispersionless equations corresponds to the classical criterion for modulational instability (MI). For modulations of linear waves, illposedness coincides with the generalized MI criterion, recently identified by Amiranashvili and Tobisch [New J. Phys., 21 (2019), 033029]. A new instability index is identified by the transition from real to complex characteristics for the weakly nonlinear modulation equations. This instability is associated with long wavelength modulations of nonlinear twophase wavetrains and can exist even when the corresponding onephase wavetrain is stable according to the generalized MI criterion. Another interpretation is that while infinitesimal perturbations of a periodic wave may not grow, small but finite amplitude perturbations may grow, hence this index identifies a nonlinear instability mechanism for onephase waves. Classifications of instability indices for multiple FDNLS equations with higherorder dispersion, including applications to finitedepth water waves and the discrete NLS equation, are presented and compared with direct numerical simulations.more » « less