skip to main content

Title: Solitary wave fission of a large disturbance in a viscous fluid conduit
This paper presents a theoretical and experimental study of the long-standing fluid mechanics problem involving the temporal resolution of a large localised initial disturbance into a sequence of solitary waves. This problem is of fundamental importance in a range of applications, including tsunami and internal ocean wave modelling. This study is performed in the context of the viscous fluid conduit system – the driven, cylindrical, free interface between two miscible Stokes fluids with high viscosity contrast. Owing to buoyancy-induced nonlinear self-steepening balanced by stress-induced interfacial dispersion, the disturbance evolves into a slowly modulated wavetrain and further into a sequence of solitary waves. An extension of Whitham modulation theory, termed the solitary wave resolution method, is used to resolve the fission of an initial disturbance into solitary waves. The developed theory predicts the relationship between the initial disturbance’s profile, the number of emergent solitary waves and their amplitude distribution, quantifying an extension of the well-known soliton resolution conjecture from integrable systems to non-integrable systems that often provide a more accurate modelling of physical systems. The theoretical predictions for the fluid conduit system are confirmed both numerically and experimentally. The number of observed solitary waves is consistently within one to two waves of the prediction, and the amplitude distribution shows remarkable agreement. Universal properties of solitary wave fission in other fluid dynamics problems are identified.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper considers two-dimensional steady solitary waves with constant vorticity propagating under the influence of gravity over an impermeable flat bed. Unlike in previous works on solitary waves, we allow for both internal stagnation points and overhanging wave profiles. Using analytic global bifurcation theory, we construct continuous curves of large-amplitude solutions. Along these curves, either the wave amplitude approaches the maximum possible value, the dimensionless wave speed becomes unbounded, or a singularity develops in a conformal map describing the fluid domain. This is stronger than what one would expect from a straightforward generalization of existing results for periodic waves. We also show that an arbitrary solitary wave of elevation with constant vorticity must be supercritical. The existence proof relies on a novel reformulation of the problem as an elliptic system for two scalar functions in a fixed domain, one describing the conformal map of the fluid region and the other the flow beneath the wave.

    more » « less
  2. Abstract

    A Hamiltonian reduction approach is defined, studied, and finally used to derive asymptotic models of internal wave propagation in density stratified fluids in two-dimensional domains. Beginning with the general Hamiltonian formalism of Benjamin (1986J. Fluid Mech.165445–74) for an ideal, stably stratified Euler fluid, the corresponding structure is systematically reduced to the setup of two homogeneous fluids under gravity, separated by an interface and confined between two infinite horizontal plates. A long-wave, small-amplitude asymptotics is then used to obtain a simplified model that encapsulates most of the known properties of the dynamics of such systems, such as bidirectional wave propagation and maximal amplitude travelling waves in the form of fronts. Further reductions, and in particular devising an asymptotic extension of Dirac’s theory of Hamiltonian constraints, lead to the completely integrable evolution equations previously considered in the literature for limiting forms of the dynamics of stratified fluids. To assess the performance of the asymptotic models, special solutions are studied and compared with those of the parent equations

    more » « less
  3. Evolution of a solitary wave travelling along a submerged sill is studied. The disturbance from the sill creates a phase lag along the wave crest between the ambient water depth and the shallower depth over the sill. This phase lag causes wave diffraction between the different parts of the wave, which induces radiating waves off the edge of the sill. The radiating waves act as an outlet for wave energy, resulting in significant and continual amplitude reduction of the solitary wave. Findings from laboratory experiments are confirmed numerically by simulating a much longer propagation distance with different sill breadths. When the sill breadth is narrow, the solitary wave slowly attenuates by wave radiation, maintaining a quasi-steady wave pattern. This is not the case for a broader sill. The resulting phase lag on the sill continually changes the wave pattern and the attenuation rate is substantially greater than the rate for the case of the narrow sill. The significant energy radiation together with the continual change in the wave formation eventually leads to the complete annihilation of the solitary wave in a wave tank. We also report a wave-breaking process along the sill observed in laboratory experiments. This breaking is induced when the wave amplitude on the sill is smaller than the maximum amplitude of a solitary wave in a uniform depth. Also found is the wake-like formation of gravity–capillary waves behind the breaking crest forming on the sill. Other features associated with the breaking are presented. 
    more » « less
  4. Conduits generated by the buoyant dynamics between two miscible Stokes fluids with high viscosity contrast, a type of core–annular flow, exhibit a rich nonlinear wave dynamics. However, little is known about the fundamental wave dispersion properties of the medium. In the present work, a pump is used to inject a time-periodic flow that results in the excitation of propagating small- and large-amplitude periodic travelling waves along the conduit interface. This wavemaker problem is used as a means to measure the linear and nonlinear dispersion relations and corresponding periodic travelling wave profiles. Measurements are favourably compared with predictions from a fully nonlinear, long-wave model (the conduit equation) and the analytically computed linear dispersion relation for two-Stokes flow. A critical frequency is observed, marking the threshold between propagating and non-propagating (spatially decaying) waves. Measurements of wave profiles and the wavenumber–frequency dispersion relation quantitatively agree with wave solutions of the conduit equation. An upshift from the conduit equation's predicted critical frequency is observed and is explained by incorporating a weak recirculating flow into the full two-Stokes flow model. When the boundary condition corresponds to the temporal profile of a nonlinear periodic travelling wave solution of the conduit equation, weakly nonlinear and strongly nonlinear, cnoidal-type waves are observed that quantitatively agree with the conduit nonlinear dispersion relation and wave profiles. This wavemaker problem is an important precursor to the experimental investigation of more general boundary value problems in viscous fluid conduit nonlinear wave dynamics. 
    more » « less
  5. The interaction of localised solitary waves with large-scale, time-varying dispersive mean flows subject to non-convex flux is studied in the framework of the modified Korteweg–de Vries (mKdV) equation, a canonical model for internal gravity wave propagation and potential vorticity fronts in stratified fluids. The effect of large amplitude, dynamically evolving mean flows on the propagation of localised waves – essentially ‘soliton steering’ by the mean flow – is considered. A recent theoretical and experimental study of this new type of dynamic soliton–mean flow interaction for convex flux has revealed two scenarios where the soliton either transmits through the varying mean flow or remains trapped inside it. In this paper, it is demonstrated that the presence of a non-convex cubic hydrodynamic flux introduces significant modifications to the scenarios for transmission and trapping. A reduced set of Whitham modulation equations is used to formulate a general mathematical framework for soliton–mean flow interaction with non-convex flux. Solitary wave trapping is stated in terms of crossing modulation characteristics. Non-convexity and positive dispersion – common for stratified fluids – imply the existence of localised, sharp transition fronts (kinks). Kinks play dual roles as a mean flow and a wave, imparting polarity reversal to solitons and dispersive mean flows, respectively. Numerical simulations of the mKdV equation agree with modulation theory predictions. The mathematical framework developed is general, not restricted to completely integrable equations like mKdV, enabling application beyond the mKdV setting to other fluid dynamic contexts subject to non-convex flux such as strongly nonlinear internal wave propagation that is prevalent in the ocean. 
    more » « less