1. The evolution of hummingbird pollination is common across angiosperm lineages throughout the Americas, presenting an opportunity to examine convergence in both traits and environments to better understand how complex phenotypes arise. We examine multiple independent shifts from bee to hummingbird pollination in the Neotropical spiral gingers (Costus) and use our data to address several common explanations for the prevalence of bee to bird pollination transitions. 2. We use floral traits of species with observed pollinators to predict pollinators of unobserved species and reconstruct ancestral pollination states on a well-resolved phylogeny. We examine whether independent transitions evolve towards the same phenotypic optimum and whether shifts to hummingbird pollination are associated with high elevation or climatic niche. 3. Traits predicting hummingbird pollination include small flower size, brightly-colored floral bracts, and the absence of nectar guides. We find many shifts to hummingbird pollination and no reversals, a single shared phenotypic optimum across hummingbird flowers, and no association between pollination and elevation or climatic niche. 4. Costus presents surprising findings compared to other plant clades. Hummingbird flowers are consistently smaller than bee flowers and primary flower colors are not predictive of pollinators. Moreover, hummingbird pollination shows no association with high elevation, as found in other tropical plants.
more »
« less
A lever action hypothesis for pendulous hummingbird flowers: experimental evidence from a columbine
Abstract Background and Aims Pendulous flowers (due to a flexible pedicel) are a common, convergent trait of hummingbird-pollinated flowers. However, the role of flexible pedicels remains uncertain despite several functional hypotheses. Here we present and test the ‘lever action hypothesis’: flexible pedicels allow pendulous flowers to move upwards from all sides, pushing the stigma and anthers against the underside of the feeding hummingbird regardless of which nectary is being visited. Methods To test whether this lever action increased pollination success, we wired emasculated flowers of serpentine columbine, Aquilegia eximia, to prevent levering and compared pollination success of immobilized flowers with emasculated unwired and wire controls. Key Results Seed set was significantly lower in wire-immobilized flowers than unwired control and wire control flowers. Video analysis of visits to wire-immobilized and unwired flowers demonstrated that birds contacted the stigmas and anthers of immobilized flowers less often than those of flowers with flexible pedicels. Conclusions We conclude that flexible pedicels permit the levering of reproductive structures onto a hovering bird. Hummingbirds, as uniquely large, hovering pollinators, differ from flies or bees which are too small to cause levering of flowers while hovering. Thus, flexible pedicels may be an adaptation to hummingbird pollination, in particular due to hummingbird size. We further speculate that this mechanism is effective only in radially symmetric flowers; in contrast, zygomorphic hummingbird-pollinated flowers are usually more or less horizontally oriented rather than having pendulous flowers and flexible pedicels.
more »
« less
- Award ID(s):
- 1831164
- PAR ID:
- 10177673
- Date Published:
- Journal Name:
- Annals of Botany
- Volume:
- 125
- Issue:
- 1
- ISSN:
- 0305-7364
- Page Range / eLocation ID:
- 59 to 65
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background and Aims Wind pollination has evolved repeatedly in flowering plants, yet the identification of a wind pollination syndrome as a set of integrated floral traits can be elusive. Thalictrum (Ranunculaceae) comprises temperate perennial herbs that have transitioned repeatedly from insect to wind pollination while also exhibiting mixed pollination, providing an ideal system to test for evolutionary correlation between floral morphology and pollination mode in a biotic to abiotic continuum. Moreover, the lack of floral organ fusion across this genus additionally allows to test for specialization to pollination vectors in the absence of this feature. Methods We expanded phylogenetic sampling in the genus from a previous study using six chloroplast loci, which allowed us to test whether species cluster into distinct pollination syndromes based on floral morphology. We then used multivariate analyses on floral traits, followed by ancestral state reconstruction of the emerging flower morphotypes and determined whether these traits are evolutionarily correlated under a Bayesian framework with Brownian motion. Key Results Floral traits fell into five distinct clusters, which were reduced to three after considering phylogenetic relatedness, and were largely consistent with flower morphotypes and associated pollination vectors. Multivariate evolutionary analyses found a positive correlation between the lengths of floral reproductive structures (styles, stigmas, filaments, and anthers). Shorter reproductive structures tracked insect-pollinated species and clades in the phylogeny while longer structures tracked wind-pollinated ones, consistent with selective pressures exerted by biotic vs. abiotic pollination vectors, respectively. Conclusions While detectable suites of integrated floral traits across Thalictrum correlated with wind or insect pollination at the extremes of the morphospace distribution, a presumed intermediate, mixed pollination mode morphospace was also detected. Thus, our data broadly support the existence of detectable flower morphotypes from convergent evolution underlying pollination mode evolution in Thalictrum, presumably via different paths from an ancestral mixed pollination state.more » « less
-
Telesonix jamesii, a rare and imperiled species of perennial saxifrage, is restricted to rocky habitats at high elevations across 21 isolated, known populations in the southern Rocky Mountains of Colorado and New Mexico. Despite its imperiled conservation status, very little is known about the natural history of T. jamesii. We studied pollination of this species during the summers of 2019–2021 at multiple locations on Pikes Peak, Colorado. We conducted a total of 899 min of pollinator surveys, identifying all floral visitors during this time period. We then examined floral visitors for the presence of T. jamesii pollen to determine which species might be effective pollinators. We found that flowers of T. jamesii are visited by a diverse assemblage of insects and one species of hummingbird. Bumble bees (Bombus) were the most commonly observed species visiting flowers, as well as the only group found carrying T. jamesii pollen on their bodies. Our findings suggest that T. jamesii is infrequently pollinated, and we speculate that gene flow for this species may be low. This work constitutes the first investigation into the field pollination ecology of T. jamesii. Our study warrants future investigation into the population genetics of this species as well as surveys of historical occurrences and high-suitability habitat for populations.more » « less
-
Summary The evolutionary switch to hummingbird pollination exemplifies complex adaptation, requiring evolutionary change in multiple component traits. Despite this complexity, diverse lineages have converged on hummingbird‐adapted flowers on a relatively short evolutionary timescale. Here, I review how features of the genetic basis of adaptation contribute to this remarkable evolutionary lability. Large‐effect substitutions, large mutational targets for adaptation, adaptive introgression, and concentrated architecture all contribute to the origin and maintenance of hummingbird‐adapted flowers. The genetic features of adaptation are likely shaped by the ecological and geographic context of the switch to hummingbird pollination, with implications for future evolutionary trajectories.more » « less
-
In the formation of species, adaptation by natural selection generates distinct combinations of traits that function well together. The maintenance of adaptive trait combinations in the face of gene flow depends on the strength and nature of selection acting on the underlying genetic loci. Floral pollination syndromes exemplify the evolution of trait combinations adaptive for particular pollinators. The North American wildflower genus Penstemon displays remarkable floral syndrome convergence, with at least 20 separate lineages that have evolved from ancestral bee pollination syndrome (wide blue-purple flowers that present a landing platform for bees and small amounts of nectar) to hummingbird pollination syndrome (bright red narrowly tubular flowers offering copious nectar). Related taxa that differ in floral syndrome offer an attractive opportunity to examine the genomic basis of complex trait divergence. In this study, we characterized genomic divergence among 229 individuals from a Penstemon species complex that includes both bee and hummingbird floral syndromes. Field plants are easily classified into species based on phenotypic differences and hybrids displaying intermediate floral syndromes are rare. Despite unambiguous phenotypic differences, genomewide differentiation between species is minimal. Hummingbird-adapted populations are more genetically similar to nearby bee-adapted populations than to geographically distant hummingbird-adapted populations, in terms of genomewide dXY. However, a small number of genetic loci are strongly differentiated between species. These ~ 20 "species-diagnostic loci", which appear to have nearly fixed differences between pollination syndromes, are sprinkled throughout the genome in high recombination regions. Several map closely to previously established floral trait QTLs. The striking difference between the diagnostic loci and the genome as whole suggests strong selection to maintain distinct combinations of traits, but with sufficient gene flow to homogenize the genomic background. A surprisingly small number of alleles confer phenotypic differences that form the basis of species identity in this species complex.more » « less
An official website of the United States government

