Transpiration and stomatal conductance in deciduous needleleaf boreal forests of northern Siberia can be highly sensitive to water stress, permafrost thaw, and atmospheric dryness. Additionally, north‐eastern Siberian boreal forests are fire‐driven, and larch (
- Award ID(s):
- 1802880
- NSF-PAR ID:
- 10177905
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 51
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 25734 to 25744
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Larix spp.) are the sole tree species. We examined differences in tree water use, stand characteristics, and stomatal responses to environmental drivers between high and low tree density stands that burned 76 years ago in north‐eastern Siberia. Our results provide process‐level insight to climate feedbacks related to boreal forest productivity, water cycles, and permafrost across Arctic regions. The high density stand had shallower permafrost thaw depths and deeper moss layers than the low density stand. Rooting depths and shallow root biomass were similar between stands. Daily transpiration was higher on average in the high‐density stand 0.12 L m−2 day−1(SE: 0.004) compared with the low density stand 0.10 L m−2 day−1(SE: 0.001) throughout the abnormally wet summer of 2016. Transpiration rates tended to be similar at both stands during the dry period in 2017 in both stands of 0.10 L m−2 day−1(SE: 0.002). The timing of precipitation impacted stomatal responses to environmental drivers, and the high density stand was more dependent on antecedent precipitation that occurred over longer periods in the past compared with the low density stand. Post‐fire tree density differences in plant–water relations may lead to different trajectories in plant mortality, water stress, and ecosystem water cycles across Siberian landscapes. -
Abstract Drought-induced productivity reductions and tree mortality have been increasing in recent decades in forests around the globe. Developing adaptation strategies hinges on an adequate understanding of the mechanisms governing the drought vulnerability of forest stands. Prescribed reduction in stand density has been used as a management tool to reduce water stress and wildfire risk, but the processes that modulate fine-scale variations in plant water supply and water demand are largely missing in ecosystem models. We used an ecohydrological model that couples plant hydraulics with groundwater hydrology to examine how within-stand variations in tree spatial arrangements and topography might mitigate forest vulnerability to drought at individual-tree and stand scales. Our results demonstrated thinning generally ameliorated plant hydraulic stress and improved carbon and water fluxes of the remaining trees, although the effectiveness varied by climate and topography. Variable thinning that adjusted thinning intensity based on topography-mediated water availability achieved higher stand productivity and lower mortality risk, compared to evenly-spaced thinning at comparable intensities. The results from numerical experiments provided mechanistic evidence that topography mediates the effectiveness of thinning and highlighted the need for an explicit consideration of within-stand heterogeneity in trees and abiotic environments when designing forest thinning to mitigate drought impacts.
-
Summary Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown.
Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity.
Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions.
Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.
-
Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage—e.g., CO2fertilization—and negative drivers that decrease it—e.g., intensifying disturbances. The net response of forest productivity to these drivers is uncertain due to the challenge of separating their effects from background disturbance–regrowth dynamics. We fit non-linear models to US forest inventory data (113,806 plot remeasurements in non-plantation forests from ~1999 to 2020) to quantify productivity trends while accounting for stand age, tree mortality, and harvest. Productivity trends were generally positive in the eastern United States, where climate change has been mild, and negative in the western United States, where climate change has been more severe. Productivity declines in the western United States cannot be explained by increased mortality or harvest; these declines likely reflect adverse climate-change impacts on tree growth. In the eastern United States, where data were available to partition biomass change into age-dependent and age-independent components, forest maturation and increasing productivity (likely due, at least in part, to CO2fertilization) contributed roughly equally to biomass carbon sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers in the water-limited forests of the western United States, whereas forest maturation and positive responses to age-independent drivers contribute to eastern US carbon sinks. The future land carbon balance of forests will likely depend on the geographic extent of drought and heat stress.
-
Abstract Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3
° C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25° C (R 25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease inR 25was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24° S–24° N) from 2000 to 2100 using a dynamic global vegetation model (LM 3VN ) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.