Frequent observations of higher mortality in larger trees than in smaller ones during droughts have sparked an increasing interest in size‐dependent drought‐induced mortality. However, the underlying physiological mechanisms are not well understood, with height‐associated hydraulic constraints often being implied as the potential mechanism driving increased drought vulnerability. We performed a quantitative synthesis on how key traits that drive plant water and carbon economy change with tree height within species and assessed the implications that the different constraints and compensations may have on the interacting mechanisms (hydraulic failure, carbon starvation and/or biotic‐agent attacks) affecting tree vulnerability to drought. While xylem tension increases with tree height, taller trees present a range of structural and functional adjustments, including more efficient water use and transport and greater water uptake and storage capacity, that mitigate the path‐length‐associated drop in water potential. These adaptations allow taller trees to withstand episodic water stress. Conclusive evidence for height‐dependent increased vulnerability to hydraulic failure and carbon starvation, and their coupling to defence mechanisms and pest and pathogen dynamics, is still lacking. Further research is needed, particularly at the intraspecific level, to ascertain the specific conditions and thresholds above which height hinders tree survival under drought.
This content will become publicly available on February 27, 2025
Drought-induced productivity reductions and tree mortality have been increasing in recent decades in forests around the globe. Developing adaptation strategies hinges on an adequate understanding of the mechanisms governing the drought vulnerability of forest stands. Prescribed reduction in stand density has been used as a management tool to reduce water stress and wildfire risk, but the processes that modulate fine-scale variations in plant water supply and water demand are largely missing in ecosystem models. We used an ecohydrological model that couples plant hydraulics with groundwater hydrology to examine how within-stand variations in tree spatial arrangements and topography might mitigate forest vulnerability to drought at individual-tree and stand scales. Our results demonstrated thinning generally ameliorated plant hydraulic stress and improved carbon and water fluxes of the remaining trees, although the effectiveness varied by climate and topography. Variable thinning that adjusted thinning intensity based on topography-mediated water availability achieved higher stand productivity and lower mortality risk, compared to evenly-spaced thinning at comparable intensities. The results from numerical experiments provided mechanistic evidence that topography mediates the effectiveness of thinning and highlighted the need for an explicit consideration of within-stand heterogeneity in trees and abiotic environments when designing forest thinning to mitigate drought impacts.
more » « less- Award ID(s):
- 2106030
- NSF-PAR ID:
- 10529653
- Publisher / Repository:
- IOPScience
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 034035
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary -
Societal Impact Statement Drought plays a conspicuous role in forest mortality, and is expected to become more severe in future climate scenarios. Recent surges in drought‐associated forest tree mortality have been documented worldwide. For example, recent droughts in California and Texas killed approximately 129 million and 300 million trees, respectively. Drought has also induced acute pine tree mortality across east‐central China, and across extensive areas in southwest China. Understanding the biological processes that enable trees to modify wood development to mitigate the adverse effects of drought will be crucial for the development of successful strategies for future forest management and conservation.
Summary Drought is a recurrent stress to forests, causing periodic forest mortality with enormous economic and environmental costs. Wood is the water‐conducting tissue of tree stems, and trees modify wood development to create anatomical features and hydraulic properties that can mitigate drought stress. This modification of wood development can be seen in tree rings where not only the amount of wood but also the morphology of the water‐conducting cells are modified in response to environmental conditions. In this review, we provide an overview of how trees conduct water, and how trees modify wood development to affect water conduction properties in response to drought. We discuss key needs for new research, and how new knowledge of wood formation can play a role in the conservation of forests under threat by climate change.
-
Abstract Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought‐related mortality derived from measurements of tree‐ring growth (ring width index; RWI) and carbon isotope discrimination (∆13C), primarily focused on ponderosa pine (
Pinus ponderosa ). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012–2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis ). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine‐dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management—particularly in drier regions—may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming. -
null (Ed.)Drought, coupled with rising temperatures, is an emerging threat to many forest types across the globe. At least to a degree, we expect management actions that reduce competition (e.g., thinning, prescribed fire, or both) to improve growth of residual trees during drought. The influences of management actions and drought on individual tree growth may be measured with high precision using tree-rings. Here, we summarize tree-ring-based assessments of the effectiveness of thinning and prescribed fire as drought adaptation tools, with special consideration for how these findings might apply to dry coniferous forests in the southwestern United States. The existing literature suggests that thinning treatments generally improve individual tree growth responses to drought, though the literature specific to southwestern coniferous forests is sparse. Assessments from studies beyond the southwestern United States indicate treatment effectiveness varies by thinning intensity, timing of the drought relative to treatments, and individualistic species responses. Several large-scale studies appear to conflict on specifics of how site aridity influences sensitivity to drought following thinning. Prescribed fire effects in the absence of thinning has received much less attention in terms of subsequent drought response. There are limitations for using tree-ring data to estimate drought responses (e.g., difficulties scaling up observations to stand- and landscape-levels). However, tree-rings describe an important dimension of drought effects for individual trees, and when coupled with additional information, such as stable isotopes, aid our understanding of key physiological mechanisms that underlie forest drought response.more » « less
-
Summary Deep‐water access is arguably the most effective, but under‐studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep‐water access may delay plant dehydration. Here, we tested the role of deep‐water access in enabling survival within a diverse tropical forest community in Panama using a novel data‐model approach.
We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990–2015) to vapor pressure deficit, water potentials in the whole‐soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water‐access depths.
Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981–2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress‐related mortality risk through deep‐water access.
The role of deep‐water access in mitigating mortality of hydraulically‐vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.