skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coding for Crowdsourced Classification with XOR Queries
This paper models the crowdsourced labeling/classification problem as a sparsely encoded source coding problem, where each query answer, regarded as a code bit, is the XOR of a small number of labels, as source information bits. In this paper we leverage the connections between this problem and well-studied codes with sparse representations for the channel coding problem to provide querying schemes with almost optimal number of queries, each of which involving only a constant number of labels. We also extend this scenario to the case where some workers can be unresponsive. For this case, we propose querying schemes where each query involves only $$\log n$$ items, where $$n$$ is the total number of items to be labeled. Furthermore, we consider classification of two correlated labeling systems and provide two-stage querying schemes with almost optimal number of queries each involving a constant number of labels.  more » « less
Award ID(s):
1763348
PAR ID:
10177927
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Information Theory Workshop (ITW)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crowdsourcing has been widely adopted to perform large projects suitable for human participation, in which tasks are usually distributed to workers. Many such projects involve classification/labeling certain collections of items through semisupervised clustering, in which queries on small subsets of the items are assigned to workers in the crowd. The answers are collected by a taskmaster and the goal is to fully recover the labels. This problem can be modeled as a sparsely encoded source coding problem, where each query answer, regarded as a code bit, is the XOR of a small number of labels, as source information bits. While the problem of designing compression/source coding schemes achieving Shannon’s optimal compression rate is very well-studied, a few have considered sparsely encoded schemes. In this paper we leverage the connections between this problem and well-studied codes with sparse representations for the channel coding problem to provide querying schemes with almost optimal number of queries, each of which involving only a constant number of labels. We also extend this scenario to the case where some workers can be unresponsive. For this case, we propose querying schemes where each query involves only log n items, where n is the total number of items to be labeled. Furthermore, we consider classification of two correlated labeling systems and provide two-stage querying schemes with almost optimal number of queries each involving a constant number of labels. 
    more » « less
  2. Two-sample tests evaluate whether two samples are realizations of the same distribution (the null hypothesis) or two different distributions (the alternative hypothesis). We consider a new setting for this problem where sample features are easily measured whereas sample labels are unknown and costly to obtain. Accordingly, we devise a three-stage framework in service of performing an effective two-sample test with only a small number of sample label queries: first, a classifier is trained with samples uniformly labeled to model the posterior probabilities of the labels; second, a novel query scheme dubbed bimodal query is used to query labels of samples from both classes, and last, the classical Friedman-Rafsky (FR) two-sample test is performed on the queried samples. Theoretical analysis and extensive experiments performed on several datasets demonstrate that the proposed test controls the Type I error and has decreased Type II error relative to uniform querying and certainty-based querying. Source code for our algorithms and experimental results is available at https://github.com/wayne0908/Label-Efficient-Two-Sample. 
    more » « less
  3. Meka, Raghu (Ed.)
    We study the stochastic minimum vertex cover problem for general graphs. In this problem, we are given a graph G=(V, E) and an existence probability p_e for each edge e ∈ E. Edges of G are realized (or exist) independently with these probabilities, forming the realized subgraph H. The existence of an edge in H can only be verified using edge queries. The goal of this problem is to find a near-optimal vertex cover of H using a small number of queries. Previous work by Derakhshan, Durvasula, and Haghtalab [STOC 2023] established the existence of 1.5 + ε approximation algorithms for this problem with O(n/ε) queries. They also show that, under mild correlation among edge realizations, beating this approximation ratio requires querying a subgraph of size Ω(n ⋅ RS(n)). Here, RS(n) refers to Ruzsa-Szemerédi Graphs and represents the largest number of induced edge-disjoint matchings of size Θ(n) in an n-vertex graph. In this work, we design a simple algorithm for finding a (1 + ε) approximate vertex cover by querying a subgraph of size O(n ⋅ RS(n)) for any absolute constant ε > 0. Our algorithm can tolerate up to O(n ⋅ RS(n)) correlated edges, hence effectively completing our understanding of the problem under mild correlation. 
    more » « less
  4. We study the classic set cover problem from the perspective of sub-linear algorithms. Given access to a collection of m sets over n elements in the query model, we show that sub-linear algorithms derived from existing techniques have almost tight query complexities. On one hand, first we show an adaptation of the streaming algorithm presented in [17] to the sub-linear query model, that returns an α-approximate cover using Õ(m(n/k)^1/(α–1) + nk) queries to the input, where k denotes the value of a minimum set cover. We then complement this upper bound by proving that for lower values of k, the required number of queries is , even for estimating the optimal cover size. Moreover, we prove that even checking whether a given collection of sets covers all the elements would require Ω(nk) queries. These two lower bounds provide strong evidence that the upper bound is almost tight for certain values of the parameter k. On the other hand, we show that this bound is not optimal for larger values of the parameter k, as there exists a (1 + ε)-approximation algorithm with Õ(mn/kε^2) queries. We show that this bound is essentially tight for sufficiently small constant ε, by establishing a lower bound of query complexity. Our lower-bound results follow by carefully designing two distributions of instances that are hard to distinguish. In particular, our first lower bound involves a probabilistic construction of a certain set system with a minimum set cover of size αk, with the key property that a small number of “almost uniformly distributed” modifications can reduce the minimum set cover size down to k. Thus, these modifications are not detectable unless a large number of queries are asked. We believe that our probabilistic construction technique might find applications to lower bounds for other combinatorial optimization problems. 
    more » « less
  5. We study the dynamic query evaluation problem: Given a full conjunctive query Q and a sequence of updates to the input database, we construct a data structure that supports constant-delay enumeration of the tuples in the query output after each update. We show that a sequence of N insert-only updates to an initially empty database can be executed in total time O(Nw(Q)), where w(Q) is the fractional hypertree width of Q. This matches the complexity of the static query evaluation problem for Q and a database of size N. One corollary is that the amortized time per single-tuple insert is constant for acyclic full conjunctive queries. In contrast, we show that a sequence of N inserts and deletes can be executed in total time Õ(Nw(Q')), where Q' is obtained from Q by extending every relational atom with extra variables that represent the lifespans of tuples in the database. We show that this reduction is optimal in the sense that the static evaluation runtime of Q' provides a lower bound on the total update time for the output of Q. Our approach achieves amortized optimal update times for the hierarchical and Loomis-Whitney join queries. 
    more » « less