skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coded Distributed Computing: Performance Limits and Code Designs
We consider the problem of coded distributed computing where a large linear computational job, such as a matrix multiplication, is divided into $$k$$ smaller tasks, encoded using an $(n,k)$ linear code, and performed over $$n$$ distributed nodes. The goal is to reduce the average execution time of the computational job. We provide a connection between the problem of characterizing the average execution time of a coded distributed computing system and the problem of analyzing the error probability of codes of length $$n$$ used over erasure channels. Accordingly, we present closed-form expressions for the execution time using binary random linear codes and the best execution time any linear-coded distributed computing system can achieve. It is also shown that there exist good binary linear codes that attain, asymptotically, the best performance any linear code, not necessarily binary, can achieve. We also investigate the performance of coded distributed computing systems using polar and Reed-Muller (RM) codes that can benefit from low-complexity decoding, and superior performance, respectively, as well as explicit constructions. The proposed framework in this paper can enable efficient designs of distributed computing systems given the rich literature in the channel coding theory.  more » « less
Award ID(s):
1763348
PAR ID:
10177956
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Information Theory Workshop (ITW)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper formulates the cache-aided multi-user Private Information Retrieval (MuPIR) problem, including K u cache-equipped users, each of which wishes to retrieve a desired message efficiently from N distributed databases with access to K independent messages. Privacy of the users’ demands requires that any individual database can not learn anything about the demands of the users. The load of this problem is defined as the average number of downloaded bits per desired message bit. The goal is to find the optimal memory-load trade-off while preserving the demand privacy. Besides the formulation of the MuPIR problem, the contribution of this paper is two-fold. First, we characterize the optimal memory-load trade-off for a system with N = 2 databases, K = 2 messages and K u = 2 users demanding distinct messages; Second, a product design with order optimality guarantee is proposed. In addition, the product design can achieve the optimal load when the cache memory is large enough. The product design embeds the well-known Sun-Jafar PIR scheme into coded caching, in order to benefit from the coded caching gain while preserving the privacy of the users’ demands. 
    more » « less
  2. Braverman, Mark (Ed.)
    A longstanding open problem in coding theory is to determine the best (asymptotic) rate R₂(δ) of binary codes with minimum constant (relative) distance δ. An existential lower bound was given by Gilbert and Varshamov in the 1950s. On the impossibility side, in the 1970s McEliece, Rodemich, Rumsey and Welch (MRRW) proved an upper bound by analyzing Delsarte’s linear programs. To date these results remain the best known lower and upper bounds on R₂(δ) with no improvement even for the important class of linear codes. Asymptotically, these bounds differ by an exponential factor in the blocklength. In this work, we introduce a new hierarchy of linear programs (LPs) that converges to the true size A^{Lin}₂(n,d) of an optimum linear binary code (in fact, over any finite field) of a given blocklength n and distance d. This hierarchy has several notable features: 1) It is a natural generalization of the Delsarte LPs used in the first MRRW bound. 2) It is a hierarchy of linear programs rather than semi-definite programs potentially making it more amenable to theoretical analysis. 3) It is complete in the sense that the optimum code size can be retrieved from level O(n²). 4) It provides an answer in the form of a hierarchy (in larger dimensional spaces) to the question of how to cut Delsarte’s LP polytopes to approximate the true size of linear codes. We obtain our hierarchy by generalizing the Krawtchouk polynomials and MacWilliams inequalities to a suitable "higher-order" version taking into account interactions of 𝓁 words. Our method also generalizes to translation schemes under mild assumptions. 
    more » « less
  3. Localized errors, which occur in windows with bounded lengths, are common in a range of applications. Such errors can be modeled as k-substring edits, which replace one substring with another string, both with lengths upper bounded by k. This generalizes errors such as localized deletions or burst substitutions studied in the literature. In this paper, we show through statistical analysis of real data that substring edits better describe differences between related documents compared to independent edits, and thus commonly arise in problems related to data synchronization. We also show that for the dataset under study, assuming codes exist that can achieve the Gilbert-Varshamov bound, substring-edit-correcting codes can synchronize two documents with much lower overhead compared to general indel/substitution-correcting codes. Furthermore, given a constant k, we construct binary codes of length n for correcting a k-substring edit with redundancy of roughly 2logn, compared to 8logn, the lowest redundancy achievable by an existing code for this problem. The time complexities of both encoding and decoding are polynomial with respect to n. 
    more » « less
  4. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    This work continues the study of linear error correcting codes against adversarial insertion deletion errors (insdel errors). Previously, the work of Cheng, Guruswami, Haeupler, and Li [Kuan Cheng et al., 2021] showed the existence of asymptotically good linear insdel codes that can correct arbitrarily close to 1 fraction of errors over some constant size alphabet, or achieve rate arbitrarily close to 1/2 even over the binary alphabet. As shown in [Kuan Cheng et al., 2021], these bounds are also the best possible. However, known explicit constructions in [Kuan Cheng et al., 2021], and subsequent improved constructions by Con, Shpilka, and Tamo [Con et al., 2022] all fall short of meeting these bounds. Over any constant size alphabet, they can only achieve rate < 1/8 or correct < 1/4 fraction of errors; over the binary alphabet, they can only achieve rate < 1/1216 or correct < 1/54 fraction of errors. Apparently, previous techniques face inherent barriers to achieve rate better than 1/4 or correct more than 1/2 fraction of errors. In this work we give new constructions of such codes that meet these bounds, namely, asymptotically good linear insdel codes that can correct arbitrarily close to 1 fraction of errors over some constant size alphabet, and binary asymptotically good linear insdel codes that can achieve rate arbitrarily close to 1/2. All our constructions are efficiently encodable and decodable. Our constructions are based on a novel approach of code concatenation, which embeds the index information implicitly into codewords. This significantly differs from previous techniques and may be of independent interest. Finally, we also prove the existence of linear concatenated insdel codes with parameters that match random linear codes, and propose a conjecture about linear insdel codes. 
    more » « less
  5. Cloud storage systems generally add redundancy in storing content files such that K files are replicated or erasure coded and stored on N > K nodes. In addition to providing reliability against failures, the redundant copies can be used to serve a larger volume of content access requests. A request for one of the files can be either be sent to a systematic node, or one of the repair groups. In this paper, we seek to maximize the service capacity region, that is, the set of request arrival rates for the K files that can be supported by a coded storage system. We explore two aspects of this problem: 1) for a given erasure code, how to optimally split incoming requests between systematic nodes and repair groups, and 2) choosing an underlying erasure code that maximizes the achievable service capacity region. In particular, we consider MDS and Simplex codes. Our analysis demonstrates that erasure coding makes the system more robust to skews in file popularity than simply replicating a file at multiple servers, and that coding and replication together can make the capacity region larger than either alone. 
    more » « less