skip to main content


Title: Towards Visually Explaining Variational Autoencoders
Recent advances in Convolutional Neural Network (CNN) model interpretability have led to impressive progress in visualizing and understanding model predictions. In particular, gradient-based visual attention methods have driven much recent effort in using visual attention maps as a means for visual explanations. A key problem, however, is these methods are designed for classification and categorization tasks, and their extension to explaining generative models, e.g., variational autoencoders (VAE) is not trivial. In this work, we take a step towards bridging this crucial gap, proposing the first technique to visually explain VAEs by means of gradient-based attention. We present methods to generate visual attention from the learned latent space, and also demonstrate such attention explanations serve more than just explaining VAE predictions. We show how these attention maps can be used to localize anomalies in images, demonstrating state-of-the-art performance on the MVTec-AD dataset. We also show how they can be infused into model training, helping bootstrap the VAE into learning improved latent space disentanglement, demonstrated on the Dsprites dataset.  more » « less
Award ID(s):
1911197
NSF-PAR ID:
10178069
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in convolutional neural network (CNN) model interpretability have led to impressive progress in vi- sualizing and understanding model predictions. In partic- ular, gradient-based visual attention methods have driven much recent effort in using visual attention maps as a means for visual explanations. A key problem, however, is these methods are designed for classification and categorization tasks, and their extension to explaining generative models, e.g., variational autoencoders (VAE) is not trivial. In this work, we take a step towards bridging this crucial gap, proposing the first technique to visually explain VAEs by means of gradient-based attention. We present methods to generate visual attention from the learned latent space, and also demonstrate such attention explanations serve more than just explaining VAE predictions. We show how these attention maps can be used to localize anomalies in images, demonstrating state-of-the-art performance on the MVTec- AD dataset. We also show how they can be infused into model training, helping bootstrap the VAE into learning im- proved latent space disentanglement, demonstrated on the Dsprites dataset. 
    more » « less
  2. In many applications, it is essential to understand why a machine learning model makes the decisions it does, but this is inhibited by the black-box nature of state-of-the-art neural networks. Because of this, increasing attention has been paid to explainability in deep learning, including in the area of video understanding. Due to the temporal dimension of video data, the main challenge of explaining a video action recognition model is to produce spatiotemporally consistent visual explanations, which has been ignored in the existing literature. In this paper, we propose Frequency-based Extremal Perturbation (F-EP) to explain a video understanding model's decisions. Because the explanations given by perturbation methods are noisy and non-smooth both spatially and temporally, we propose to modulate the frequencies of gradient maps from the neural network model with a Discrete Cosine Transform (DCT). We show in a range of experiments that F-EP provides more spatiotemporally consistent explanations that more faithfully represent the model's decisions compared to the existing state-of-the-art methods. 
    more » « less
  3. Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. 
    more » « less
  4. null (Ed.)
    Disentangled generative models map a latent code vector to a target space, while enforcing that a subset of the learned latent codes are interpretable and associated with distinct properties of the target distribution. Recent advances have been dominated by Variational AutoEncoder (VAE)-based methods, while training disentangled generative adversarial networks (GANs) remains challenging. In this work, we show that the dominant challenges facing disentangled GANs can be mitigated through the use of self-supervision. We make two main contributions: first, we design a novel approach for training disentangled GANs with self-supervision. We propose contrastive regularizer, which is inspired by a natural notion of disentanglement: latent traversal. This achieves higher disentanglement scores than state-of-the-art VAE- and GAN-based approaches. Second, we propose an unsupervised model selection scheme called ModelCentrality, which uses generated synthetic samples to compute the medoid (multi-dimensional generalization of median) of a collection of models. The current common practice of hyper-parameter tuning requires using ground-truths samples, each labelled with known perfect disentangled latent codes. As real datasets are not equipped with such labels, we propose an unsupervised model selection scheme and show that it finds a model close to the best one, for both VAEs and GANs. Combining contrastive regularization with ModelCentrality, we improve upon the state-of-the-art disentanglement scores significantly, without accessing the supervised data. 
    more » « less
  5. In this work, we present a new approach for latent system dynamics and remaining useful life (RUL) estimation of complex degrading systems using generative modeling and reinforcement learning. The main contributions of the proposed method are two-fold. First, we show how a deep generative model can approximate the functionality of high-fidelity simulators and, thus, is able to substitute expensive and complex physics-based models with data-driven surrogate ones. In other words, we can use the generative model in lieu of the actual system as a surrogate model of the system. Furthermore, we show how to use such surrogate models for predictive analytics. Our method follows two main steps. First, we use a deep variational autoencoder (VAE) to learn the distribution over the latent state-space that characterizes the dynamics of the system under monitoring. After model training, the probabilistic VAE decoder becomes the surrogate system model. Then, we develop a scalable reinforcement learning framework using the decoder as the environment, to train an agent for identifying adequate approximate values of the latent dynamics, as well as the RUL.To our knowledge, the method presented in this paper is the first in industrial prognostics that utilizes generative models and reinforcement learning in that capacity. While the process requires extensive data preprocessing and environment tailored design, which is not always possible, it demonstrates the ability of generative models working in conjunction with reinforcement learning to provide proper value estimations for system dynamics and their RUL. To validate the quality of the proposed method, we conducted numerical experiments using the train_FD002 dataset provided by the NASA CMAPSS data repository. Different subsets were used to train the VAE and the RL agent, and a leftover set was then used for model validation. The results shown prove the merit of our method and will further assist us in developing a data-driven RL environment that incorporates more complex latent dynamic layers, such as normal/faulty operating conditions and hazard processes. 
    more » « less