skip to main content

Title: Towards Visually Explaining Variational Autoencoders
Recent advances in convolutional neural network (CNN) model interpretability have led to impressive progress in vi- sualizing and understanding model predictions. In partic- ular, gradient-based visual attention methods have driven much recent effort in using visual attention maps as a means for visual explanations. A key problem, however, is these methods are designed for classification and categorization tasks, and their extension to explaining generative models, e.g., variational autoencoders (VAE) is not trivial. In this work, we take a step towards bridging this crucial gap, proposing the first technique to visually explain VAEs by means of gradient-based attention. We present methods to generate visual attention from the learned latent space, and also demonstrate such attention explanations serve more than just explaining VAE predictions. We show how these attention maps can be used to localize anomalies in images, demonstrating state-of-the-art performance on the MVTec- AD dataset. We also show how they can be infused into model training, helping bootstrap the VAE into learning im- proved latent space disentanglement, demonstrated on the Dsprites dataset.
Authors:
; ; ; ; ; ;
Award ID(s):
1638234
Publication Date:
NSF-PAR ID:
10178637
Journal Name:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Page Range or eLocation-ID:
8642-8651
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in Convolutional Neural Network (CNN) model interpretability have led to impressive progress in visualizing and understanding model predictions. In particular, gradient-based visual attention methods have driven much recent effort in using visual attention maps as a means for visual explanations. A key problem, however, is these methods are designed for classification and categorization tasks, and their extension to explaining generative models, e.g., variational autoencoders (VAE) is not trivial. In this work, we take a step towards bridging this crucial gap, proposing the first technique to visually explain VAEs by means of gradient-based attention. We present methods to generatemore »visual attention from the learned latent space, and also demonstrate such attention explanations serve more than just explaining VAE predictions. We show how these attention maps can be used to localize anomalies in images, demonstrating state-of-the-art performance on the MVTec-AD dataset. We also show how they can be infused into model training, helping bootstrap the VAE into learning improved latent space disentanglement, demonstrated on the Dsprites dataset.« less
  2. Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and showmore »how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains.« less
  3. Disentangled generative models map a latent code vector to a target space, while enforcing that a subset of the learned latent codes are interpretable and associated with distinct properties of the target distribution. Recent advances have been dominated by Variational AutoEncoder (VAE)-based methods, while training disentangled generative adversarial networks (GANs) remains challenging. In this work, we show that the dominant challenges facing disentangled GANs can be mitigated through the use of self-supervision. We make two main contributions: first, we design a novel approach for training disentangled GANs with self-supervision. We propose contrastive regularizer, which is inspired by a natural notionmore »of disentanglement: latent traversal. This achieves higher disentanglement scores than state-of-the-art VAE- and GAN-based approaches. Second, we propose an unsupervised model selection scheme called ModelCentrality, which uses generated synthetic samples to compute the medoid (multi-dimensional generalization of median) of a collection of models. The current common practice of hyper-parameter tuning requires using ground-truths samples, each labelled with known perfect disentangled latent codes. As real datasets are not equipped with such labels, we propose an unsupervised model selection scheme and show that it finds a model close to the best one, for both VAEs and GANs. Combining contrastive regularization with ModelCentrality, we improve upon the state-of-the-art disentanglement scores significantly, without accessing the supervised data.« less
  4. Despite remarkable recent progress on both unconditional and conditional image synthesis, it remains a long-standing problem to learn generative models that are capable of synthesizing realistic and sharp images from reconfigurable spatial layout (i.e., bounding boxes + class labels in an image lattice) and style (i.e., structural and appearance variations encoded by latent vectors), especially at high resolution. By reconfigurable, it means that a model can preserve the intrinsic one-to-many mapping from a given layout to multiple plausible images with different styles, and is adaptive with respect to perturbations of a layout and style latent code. In this paper, wemore »present a layout- and style-based architecture for generative adversarial networks (termed LostGANs) that can be trained end-to-end to generate images from reconfigurable layout and style. Inspired by the vanilla StyleGAN, the proposed LostGAN consists of two new components: (i) learning fine-grained mask maps in a weakly-supervised manner to bridge the gap between layouts and images, and (ii) learning object instance-specific layout-aware feature normalization (ISLA-Norm) in the generator to realize multi-object style generation. In experiments, the proposed method is tested on the COCO-Stuff dataset and the Visual Genome dataset with state-of-the-art performance obtained. The code and pretrained models are available at https://github.com/iVMCL/LostGANs« less
  5. Ranzato, M. ; Beygelzimer, A. ; Dauphin, Y ; Liang, P. S. ; Vaughan, J. W. (Ed.)
    Attention maps are popular tools for explaining the decisions of convolutional neural networks (CNNs) for image classification. Typically, for each image of interest, a single attention map is produced, which assigns weights to pixels based on their importance to the classification. We argue that a single attention map provides an incomplete understanding since there are often many other maps that explain a classification equally well. In this paper, we propose to utilize a beam search algorithm to systematically search for multiple explanations for each image. Results show that there are indeed multiple relatively localized explanations for many images. However, naivelymore »showing multiple explanations to users can be overwhelming and does not reveal their common and distinct structures. We introduce structured attention graphs (SAGs), which compactly represent sets of attention maps for an image by visualizing how different combinations of image regions impact the confidence of a classifier. An approach to computing a compact and representative SAG for visualization is proposed via diverse sampling. We conduct a user study comparing the use of SAGs to traditional attention maps for answering comparative counterfactual questions about image classifications. Our results show that the users are significantly more accurate when presented with SAGs compared to standard attention map baselines.« less