skip to main content


Title: On Ramsey numbers of hedgehogs
Abstract The hedgehog H t is a 3-uniform hypergraph on vertices $1, \ldots ,t + \left({\matrix{t \cr 2}}\right)$ such that, for any pair ( i , j ) with 1 ≤ i < j ≤ t , there exists a unique vertex k > t such that { i , j , k } is an edge. Conlon, Fox and Rödl proved that the two-colour Ramsey number of the hedgehog grows polynomially in the number of its vertices, while the four-colour Ramsey number grows exponentially in the square root of the number of vertices. They asked whether the two-colour Ramsey number of the hedgehog H t is nearly linear in the number of its vertices. We answer this question affirmatively, proving that r ( H t ) = O ( t 2 ln t ).  more » « less
Award ID(s):
1855635
PAR ID:
10178082
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Combinatorics, Probability and Computing
Volume:
29
Issue:
1
ISSN:
0963-5483
Page Range / eLocation ID:
101 to 112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that there is an absolute constant c > 0 c>0 such that the following holds. For every n > 1 n > 1 , there is a 5-uniform hypergraph on at least 2 2 c n 1 / 4 2^{2^{cn^{1/4}}} vertices with independence number at most n n , where every set of 6 vertices induces at most 3 edges. The double exponential growth rate for the number of vertices is sharp. By applying a stepping-up lemma established by the first two authors, analogous sharp results are proved for k k -uniform hypergraphs. This answers the penultimate open case of a conjecture in Ramsey theory posed by Erdős and Hajnal in 1972. 
    more » « less
  2. We consider the problem of space-efficiently estimating the number of simplices in a hypergraph stream. This is the most natural hypergraph generalization of the highly-studied problem of estimating the number of triangles in a graph stream. Our input is a k-uniform hypergraph H with n vertices and m hyperedges, each hyperedge being a k-sized subset of vertices. A k-simplex in H is a subhypergraph on k+1 vertices X such that all k+1 possible hyperedges among X exist in H. The goal is to process the hyperedges of H, which arrive in an arbitrary order as a data stream, and compute a good estimate of T_k(H), the number of k-simplices in H. We design a suite of algorithms for this problem. As with triangle-counting in graphs (which is the special case k = 2), sublinear space is achievable but only under a promise of the form T_k(H) ≥ T. Under such a promise, our algorithms use at most four passes and together imply a space bound of O(ε^{-2} log δ^{-1} polylog n ⋅ min{(m^{1+1/k})/T, m/(T^{2/(k+1)})}) for each fixed k ≥ 3, in order to guarantee an estimate within (1±ε)T_k(H) with probability ≥ 1-δ. We also give a simpler 1-pass algorithm that achieves O(ε^{-2} log δ^{-1} log n⋅ (m/T) (Δ_E + Δ_V^{1-1/k})) space, where Δ_E (respectively, Δ_V) denotes the maximum number of k-simplices that share a hyperedge (respectively, a vertex), which generalizes a previous result for the k = 2 case. We complement these algorithmic results with space lower bounds of the form Ω(ε^{-2}), Ω(m^{1+1/k}/T), Ω(m/T^{1-1/k}) and Ω(mΔ_V^{1/k}/T) for multi-pass algorithms and Ω(mΔ_E/T) for 1-pass algorithms, which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our techniques extend and generalize several different ideas previously developed for triangle counting in graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs. 
    more » « less
  3. Complex systems such as smart cities and smart power grids rely heavily on their interdependent components. The failure of a component in one network may lead to the failure of the supported component in another network. Components which support a large number of interdependent components may be more vulnerable to attacks and failures. In this paper, we study the robustness of two interdependent networks under node failures. By modeling each network using a random geometric graph (RGG), we study conditions for the percolation of two interdependent RGGs after in-homogeneous node failures. We derive analytical bounds on the interdependent degree thresholds (k 1 ,k 2 ), such that the interdependent RGGs percolate after removing nodes in G i that support more than k j nodes in G j (∀i, j ∈ {1, 2}, i ≠ j). We verify the bounds using numerical simulation, and show that there is a tradeoff between k 1 and k 2 for maintaining percolation after the failures. 
    more » « less
  4. Motivated by the Erdős–Szekeres convex polytope conjecture in $\mathbb{R}^{d}$ , we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers $n>k\geqslant 5$ , what is the minimum integer $g_{k}(n)$ such that any $k$ -uniform hypergraph on $g_{k}(n)$ vertices with the property that any set of $k+1$ vertices induces 0, 2, or 4 edges, contains an independent set of size $n$ . Our main result shows that $g_{k}(n)>2^{cn^{k-4}}$ , where $c=c(k)$ . 
    more » « less
  5. We study the rank of a random n × m matrix An, m; k with entries from GF(2), and exactly k unit entries in each column, the other entries being zero. The columns are chosen independently and uniformly at random from the set of all (nk) such columns. We obtain an asymptotically correct estimate for the rank as a function of the number of columns m in terms of c, n, k, and where m = cn/k. The matrix An, m; k forms the vertex-edge incidence matrix of a k-uniform random hypergraph H. The rank of An, m; k can be expressed as follows. Let |C2| be the number of vertices of the 2-core of H, and | E (C2)| the number of edges. Let m* be the value of m for which |C2| = |E(C2)|. Then w.h.p. for m < m* the rank of An, m; k is asymptotic to m, and for m ≥ m* the rank is asymptotic to m – |E(C2)| + |C2|. In addition, assign i.i.d. U[0, 1] weights Xi, i ∊ 1, 2, … m to the columns, and define the weight of a set of columns S as X(S) = ∑j∊S Xj. Define a basis as a set of n – 1 (k even) linearly independent columns. We obtain an asymptotically correct estimate for the minimum weight basis. This generalises the well-known result of Frieze [On the value of a random minimum spanning tree problem, Discrete Applied Mathematics, (1985)] that, for k = 2, the expected length of a minimum weight spanning tree tends to ζ(3) ∼ 1.202. 
    more » « less