skip to main content


Title: A note on the Erdős-Hajnal hypergraph Ramsey problem
We show that there is an absolute constant c > 0 c>0 such that the following holds. For every n > 1 n > 1 , there is a 5-uniform hypergraph on at least 2 2 c n 1 / 4 2^{2^{cn^{1/4}}} vertices with independence number at most n n , where every set of 6 vertices induces at most 3 edges. The double exponential growth rate for the number of vertices is sharp. By applying a stepping-up lemma established by the first two authors, analogous sharp results are proved for k k -uniform hypergraphs. This answers the penultimate open case of a conjecture in Ramsey theory posed by Erdős and Hajnal in 1972.  more » « less
Award ID(s):
1952786
NSF-PAR ID:
10411786
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
150
Issue:
759
ISSN:
0002-9939
Page Range / eLocation ID:
3675 to 3685
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract May the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}. We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ 4– o (1) but not O ( δ 4 ). Let M ( δ ) be the maximum number such that the following holds: for every ∊ > 0 and $G = {\mathbb{F}}_2^n$ with n sufficiently large, if A ⊆ G × G with A ≥ δ | G | 2 , then there exists a nonzero “popular difference” d ∈ G such that the number of “corners” ( x , y ), ( x + d , y ), ( x , y + d ) ∈ A is at least ( M ( δ )–∊)| G | 2 . As a corollary via a recent result of Mandache, we conclude that M ( δ ) = δ 4– o (1) and M ( δ ) = ω ( δ 4 ). On the other hand, for 0 < δ < 1/2 and sufficiently large N , there exists A ⊆ [ N ] 3 with | A | ≥ δN 3 such that for every d ≠ 0, the number of corners ( x , y , z ), ( x + d , y , z ), ( x , y + d , z ), ( x , y , z + d ) ∈ A is at most δ c log(1/ δ ) N 3 . A similar bound holds in higher dimensions, or for any configuration with at least 5 points or affine dimension at least 3. 
    more » « less
  2. For an $r$-uniform hypergraph $H$, let $\nu^{(m)}(H)$ denote the maximum size of a set $M$ of edges in $H$ such that every two edges in $M$ intersect in less than $m$ vertices, and let $\tau^{(m)}(H)$ denote the minimum size of a collection $C$ of $m$-sets of vertices such that every edge in $H$ contains an element of $C$. The fractional analogues of these parameters are denoted by $\nu^{*(m)}(H)$ and $\tau^{*(m)}(H)$, respectively. Generalizing a famous conjecture of Tuza on covering triangles in a graph, Aharoni and Zerbib conjectured that for every $r$-uniform hypergraph $H$, $\tau^{(r-1)}(H)/\nu^{(r-1)}(H) \leq \lceil{\frac{r+1}{2}}\rceil$. In this paper we prove bounds on the ratio between the parameters $\tau^{(m)}$ and $\nu^{(m)}$, and their fractional analogues. Our main result is that, for every $r$-uniform hypergraph~$H$,\[ \tau^{*(r-1)}(H)/\nu^{(r-1)}(H) \le \begin{cases} \frac{3}{4}r - \frac{r}{4(r+1)} &\text{for }r\text{ even,}\\\frac{3}{4}r - \frac{r}{4(r+2)} &\text{for }r\text{ odd.} \\\end{cases} \]This improves the known bound of $r-1$.We also prove that, for every $r$-uniform hypergraph $H$, $\tau^{(m)}(H)/\nu^{*(m)}(H) \le \operatorname{ex}_m(r, m+1)$, where the Turán number $\operatorname{ex}_r(n, k)$ is the maximum number of edges in an $r$-uniform hypergraph on $n$ vertices that does not contain a copy of the complete $r$-uniform hypergraph on $k$ vertices. Finally, we prove further bounds in the special cases $(r,m)=(4,2)$ and $(r,m)=(4,3)$. 
    more » « less
  3. One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $n$-vertex graph with more than $\frac{k-1}{2}n$ edges contains any $k$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $r$-uniform hypergraph, i.e., a hypergraph where each edge contains $r$ vertices. A tight tree is an $r$-uniform hypergraph such that there is an ordering $v_1,\ldots,v_n$ of its its vertices with the following property: the vertices $v_1,\ldots,v_r$ form an edge and for every $i>r$, there is a single edge $e$ containing the vertex $v_i$ and $r-1$ of the vertices $v_1,\ldots,v_{i-1}$, and $e\setminus\{v_i\}$ is a subset of one of the edges consisting only of vertices from $v_1,\ldots,v_{i-1}$. The conjecture of Kalai asserts that every $n$-vertex $r$-uniform hypergraph with more than $\frac{k-1}{r}\binom{n}{r-1}$ edges contains every $k$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $n$ for every $r$ and $k$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $r$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $r$ and $k$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices. 
    more » « less
  4. Motivated by the Erdős–Szekeres convex polytope conjecture in $\mathbb{R}^{d}$ , we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers $n>k\geqslant 5$ , what is the minimum integer $g_{k}(n)$ such that any $k$ -uniform hypergraph on $g_{k}(n)$ vertices with the property that any set of $k+1$ vertices induces 0, 2, or 4 edges, contains an independent set of size $n$ . Our main result shows that $g_{k}(n)>2^{cn^{k-4}}$ , where $c=c(k)$ . 
    more » « less
  5. Abstract

    Given a sequence $\{Z_d\}_{d\in \mathbb{N}}$ of smooth and compact hypersurfaces in ${\mathbb{R}}^{n-1}$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$ such that each manifold $Z_d$ is diffeomorphic to a component of the zero set on $\Gamma$ of some polynomial of degree $d$. (This is in sharp contrast with the case when $\Gamma$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $p$ on $\Gamma$ is bounded by a polynomial in $\deg (p)$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$ containing a subset $D$ homeomorphic to a disk, and a family of polynomials $\{p_m\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that $(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$ i.e. the zero set of $p_m$ in $D$ is isotopic to $Z_{d_m}$ in ${\mathbb{R}}^{n-1}$. This says that, up to extracting subsequences, the intersection of $\Gamma$ with a hypersurface of degree $d$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $0 \leq k \leq n-2$ and every sequence of natural numbers $a=\{a_d\}_{d\in \mathbb{N}}$ there is a regular, compact semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$, a subsequence $\{a_{d_m}\}_{m\in \mathbb{N}}$ and homogeneous polynomials $\{p_{m}\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $b_k$ denotes the $k$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $\Gamma$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $d$, of the set $\Sigma _{d_m,a, \Gamma }$ of polynomials verifying (0.1) is positive, but there exists a constant $c_\Gamma$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $a$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $\Gamma$, for most polynomials a Bézout-type bound holds for the intersection $\Gamma \cap Z(p)$: for every $0\leq k\leq n-2$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$

     
    more » « less