Abstract. The recent changes and record lows in Antarctic sea ice extent illustrate the need for longer estimates beyond the short satellite observation period commencing around 1979. However, Antarctic sea ice extent reconstructions since 1900 based on paleo-records and those generated based on instrumental observations from the Southern Hemisphere midlatitudes are markedly different, especially prior to 1979. Here, these reconstructions are examined with the goal of understanding the relative strengths and limitations of each reconstruction better so that researchers using the various datasets can interpret them appropriately. Overall, it is found that the different spatial and temporal resolutions of each dataset play a secondary role to the inherent connections each reconstruction has with its implied atmospheric circulation. Five Southern Hemisphere pressure reconstructions spanning the 20th century are thus examined further. There are different variabilities and trends poleward of 60∘ S between proxy-based and station-based 20th century pressure reconstructions, which are connected to the disagreement between the Antarctic sea ice extent reconstructions examined here. Importantly, reconstructions based on only coral records provide the best agreement between the early pressure reconstructions, suggesting that a contributing role of tropical variability is present in the station-based pressure (and therefore sea ice) reconstructions. In contrast, ice-core-only reconstructions provide a local, high-latitude constraint that creates differences between the proxy-based and station-based reconstructions near Antarctica. Our results reveal the greatest consistencies and inconsistencies in available datasets and highlight the need to better understand the relative roles of the tropics versus high latitudes in historical sea ice variability around Antarctica.
more »
« less
Southern Hemisphere Pressure Relationships during the 20th Century—Implications for Climate Reconstructions and Model Evaluation
The relationship between Southern Hemisphere middle and high-latitude regions has made it possible to generate observationally-based Antarctic pressure reconstructions throughout the 20th century, even though routinely collected observations for this continent only began around 1957. While nearly all reconstructions inherently assume stability in these relationships through time and in the absence of direct observations, this stationarity constraint can be fully tested in a model setting. Seasonal pressure reconstructions based on the principal component regression (PCR) method spanning 1905–2013 are done entirely within the framework of the Community Atmospheric version 5 (CAM5) model in this study in order to evaluate this assumption, test the robustness of the PCR procedure for Antarctic pressure reconstructions and to evaluate the CAM5 model. Notably, the CAM5 reconstructions outperformed the observationally-based reconstruction in every season except the austral summer. Other tests indicate that relationships between Antarctic pressure and pressure across the Southern Hemisphere remain stable throughout the 20th century in CAM5. In contrast, 20th century reanalyses all display marked changes in mid-to-high latitude pressure relationships in the early 20th century. Overall, comparisons indicate both the CAM5 model and the pressure reconstructions evaluated here are reliable estimates of Antarctic pressure throughout the 20th century, with the largest differences between the two resulting from differences in the underlying reconstruction predictor networks and not from changes in the model experiments.
more »
« less
- Award ID(s):
- 1744998
- PAR ID:
- 10178089
- Date Published:
- Journal Name:
- Geosciences
- Volume:
- 9
- Issue:
- 10
- ISSN:
- 2076-3263
- Page Range / eLocation ID:
- 413
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An assessment of early 20th century Antarctic pressure reconstructions using historical observationsAbstract While gridded seasonal pressure reconstructions poleward of 60°S extending back to 1905 have been recently completed, their skill has not been assessed prior to 1958. To provide a more thorough evaluation of the skill and performance in the early 20th century, these reconstructions are compared to other gridded datasets, historical data from early Antarctic expeditions, ship records, and temporary bases. Overall, the comparison confirms that the reconstruction uncertainty of 2–4 hPa (evaluated after 1979) over the Southern Ocean is a valid estimate of the reconstruction error in the early 20th century. Over the interior and near the coast of Antarctica, direct comparisons with historical data are challenged by elevation‐based reductions to sea level pressure. In a few cases, a simple linear adjustment of the reconstruction to sea level matches the historical data well, but in other cases, the differences remain greater than 10 hPa. Despite these large errors, comparisons with continuous multi‐season observations demonstrate that aspects of the interannual variability are often still captured, suggesting that the reconstructions have skill representing variations on this timescale, even if it is difficult to determine how well they capture the mean pressure at these higher elevations. Additional comparisons with various 20th‐century reanalysis products demonstrate the value of assimilating the historical observations in these datasets, which acts to substantially reduce the reanalysis ensemble spread, and bring the reanalysis ensemble mean within the reconstruction and observational uncertainty.more » « less
-
Abstract Using theHighattitude Interferometer WIND observation balloon and Antarctic Jang Bogo station high latitude conjugate observations of the thermospheric winds we investigate the seasonal and hemispheric differences between the northern and southern hemispheres in June 2018. We found that the summer (northern) hemisphere dayside meridional winds have a double‐hump feature, whereas in the winter (southern) hemisphere the dayside meridional winds have a single hump feature. We attribute that to stronger summer, perhaps, northern hemisphere cusp heating. We also compared the observation with NCAR Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) model. The TIEGCM reproduced the double‐hump feature because of added cusp heating. The summer hemisphere has stronger anti‐sunward winds. This is the first time we have very high latitude conjugate thermospheric wind observations.more » « less
-
Biomass burning plays an important role in climate-forcing and atmospheric chemistry. The drivers of fire activity over the past two centuries, however, are hotly debated and fueled by poor constraints on the magnitude and trends of preindustrial fire regimes. As a powerful tracer of biomass burning, reconstructions of paleoatmospheric carbon monoxide (CO) can provide valuable information on the evolution of fire activity across the preindustrial to industrial transition. Here too, however, significant disagreements between existing CO records currently allow for opposing fire histories. In this study, we reconstruct a continuous record of Antarctic ice core CO between 1821 and 1995 CE to overlap with direct atmospheric observations. Our record indicates that the Southern Hemisphere CO burden ([CO]) increased by 50% from a preindustrial mixing ratio of ca. 35 ppb to ca. 53 ppb by 1995 CE with more variability than allowed for by state-of-the-art chemistry-climate models, suggesting that historic CO dynamics have been not fully accounted for. Using a 6-troposphere box model, a 40 to 50% decrease in Southern Hemisphere biomass-burning emissions, coincident with unprecedented rates of early 20th century anthropogenic land-use change, is identified as a strong candidate for this mismatch.more » « less
-
Abstract This paper compares the characteristics of the Tropical Easterly Jet (TEJ) and upper‐level winds in six reanalysis products, compares them with soundings at seven West African locations, examines the relationship between Sahel rainfall and the TEJ, and examines factors influencing the TEJ. The jet characteristics assessed by MERRA2, NCEP 1, JRA 55, and ERA 5 are similar. CFSR and 20th Century Reanalysis are outliers in nearly every analysis, overestimating wind speeds by as much as 25 to 40% compared to other reanalyses. Over the period 1948 to 2014, the correlation between rainfall and TEJ magnitude is .72. Arguments based on observations and modelling studies provide evidence that on interannual scales changes in the TEJ are not forced by rainfall, that large‐scale factors drive the TEJ. Potential mechanisms are discussed for a causal relationship such that a strong jet leads to high rainfall. However, further modelling efforts are needed to conclusively determine whether the TEJ/Sahel rainfall link is a result of common forcing factors. The factors that appear to control jet strength include sea‐surface temperature (SST) contrast between the central equatorial Pacific and central equatorial Indian Ocean (correlation of −.64), SST contrast between the central equatorial and the southern subtropical Indian Ocean (correlation of −.39), the latitude of the shift between upper‐tropospheric easterlies and westerlies in the Southern Hemisphere (correlation of −.84 at 150 hPa), and the intensity of the Southern Hemisphere westerlies (correlation of +.52 at 200 hPa). This suggests considerable control on the TEJ by extra‐tropical circulation in the Southern Hemisphere.more » « less
An official website of the United States government

