skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation and synthesis of silver dendritic nanostructures for surface-enhanced Raman scattering
Silver dendritic nanostructures (AgD) is investigated for surface-enhanced Raman scattering (SERS) with simulation and experiments, the simulations showed that there is a significant absorbance over a broad spectrum from the AgD, this indicated that AgD is a good candidate for SERS. The simulations helped to study the parameters of the AgD that affects the SERS and we applied these simulation results for experimental designs, in which our experimental results of synthesis and characterization results of Raman spectrum showed consistence with the simulation results. These simulation results are very helpful in deciding the experimental parameters for efficient and effective synthesizing and reproduction of hierarchical silver dendritic nanostructure. The AgD were produced using displacement redox reaction between AgNO 3 solution and Copper foil. We found that the concentration of AgNO 3 played major role on the rate of reaction, and the rapid growth of the silver nanostructures was observed as the reaction time increases. The structural and morphological evolution of silver dendrites was examined with Scanning Electron Microscope (SEM). The Raman enhancement of AgDs was evaluated using Elman's reagent (DTNB) and Rhodamine 6G (R6G). The silver dendrites have great potential for diverse sensing applications ranging from food safety control, environmental monitoring and assessment, forensic investigation, and to medical diagnosis.  more » « less
Award ID(s):
1829245
PAR ID:
10178105
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Materials Express
Volume:
9
Issue:
9
ISSN:
2158-5849
Page Range / eLocation ID:
1082 to 1086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fish intestine is an important barrier for environmental toxicants, including metals and metal nanoparticles. Tracking chemical transformation at the interface between the intestinal epithelium and the intestinal lumen can inform us about chemicals' bio-reactivity and toxicity but is challenging due to the lack of appropriate models. To allow for such investigations, a model of the fish intestine derived from rainbow trout ( Oncorhynchus mykiss ), the RTgutGC cell line, was used. Cells were exposed to silver nitrate (AgNO 3 ) or citrate coated silver nanoparticles (cit-AgNPs) in Leibovitz's L-15 medium without amino acids and vitamins (L-15/ex), which allowed the determination of the extracellular silver species using a chemical equilibrium model. X-ray absorption spectroscopy (XAS) was used to track intracellular silver speciation. Cellular toxicity, silver accumulation, and metallothionein (MT) mRNA levels were also measured. Cells accumulated the same concentrations of silver when exposed to equimolar amounts ( i.e. 1, 5 and 10 μM) of AgNO 3 or cit-AgNPs. However, AgNO 3 was shown to be more toxic than cit-AgNPs. Intracellular silver speciation changed over time in both exposure series. After 1 hour, intracellular silver speciation was dominated by chloride complexation in both exposures. After 24 and 72 hours of exposure to cit-AgNPs, ∼7% of silver was complexed to cysteine, whereas the remaining silver was AgNPs. In cells exposed to AgNO 3 for 72 hours, 97% of Ag was complexed to cysteine. A significant increase, compared to controls, in metallothionein mRNA levels at 24 and 72 hours of exposure to AgNO 3 and cit-AgNPs can explain the formation of Ag–cysteine complexes. In summary, these data show that silver chloride species are bioavailable and that complexation to cysteine scavenges intracellular dissolved silver ions, thus preventing toxicity. Silver nanoparticles present a similar but attenuated toxic response to AgNO 3 . Thus, at least in acute exposures, existing risk assessment for dissolved silver species could be protective for nanosilver. 
    more » « less
  2. Abstract Plasmonic metal nanostructures are essential for plasmon‐mediated chemical reactions (PMCRs) and surface‐enhanced Raman spectroscopy (SERS). The nanostructures are commonly made from the coinage metals gold and silver. Copper (Cu) is less used mainly due to the difficulties in fabricating stable nanostructures. However, Cu is an attractive option with its strong plasmonic properties, high catalytic activities, and relatively cheap price. Herein, we fabricated tunable, reliable, and efficient Cu nanoelectrodes (CuNEs). Using time‐resolved electrochemical SERS, we have comprehensively studied the reversible chemical transformations between aromatic amine and nitro groups modified on the CuNE surface. Their PMCRs are well‐controlled by changing the surface roughness, the oxidation states of Cu, and the applied electrode potential. We thus demonstrate that the Cu nanostructures enable better investigations in the interplays between PMCR, electrochemistry, and Cu catalysis. 
    more » « less
  3. Nanohybrids of graphene and two-dimensional (2D) layered transition metal dichalcogenides (TMD) nanostructures can provide a promising substrate for extraordinary surface-enhanced Raman spectroscopy (SERS) due to the combined electromagnetic enhancement on TMD nanostructures via localized surface plasmonic resonance (LSPR) and chemical enhancement on graphene. In these nanohybrid SERS substrates, the LSPR on TMD nanostructures is affected by the TMD morphology. Herein, we report the first successful growth of MoS2 nanodonuts (N-donuts) on graphene using a vapor transport process on graphene. Using Rhodamine 6G (R6G) as a probe, SERS spectra were compared on MoS2 N-donuts/graphene nanohybrids substrates. A remarkably high R6G SERS sensitivity up to 2 × 10−12 M has been obtained, which can be attributed to the more robust LSPR effect than in other TMD nanostructures such as nanodiscs as suggested by the finite-difference time-domain simulation. This result demonstrates that non-metallic TMD/graphene nanohybrids substrates can have SERS sensitivity up to one order of magnitude higher than that reported on the plasmonic metal nanostructures/2D materials SERS substrates, providing a promising scheme for high-sensitivity, low-cost applications for biosensing. 
    more » « less
  4. Surface-enhanced Raman scattering (SERS) is a sensitive analytical technique capable of magnifying the vibrational intensity of molecules adsorbed onto the surface of metallic nanostructures. Various solution-based SERS-active metallic nanostructures have been designed to generate substantial SERS signal enhancements. However, most of these SERS substrates rely on the chemical aggregation of metallic nanostructures to create strong signals. While this can induce high SERS intensities through plasmonic coupling, most chemically aggregated assemblies suffer from poor signal reproducibility and reduced long-term stability. To overcome these issues, here we report for the first time the synthesis of gold core–satellite nanoparticles (CSNPs) for robust SERS signal generation. The novel CSNP assemblies consist of a 30 nm spherical gold core linked to 18 nm satellite particles via linear heterobifunctional thiol–amine terminated PEG chains. We explore the effects that the varying chain lengths have on SERS hot-spot generation, signal reproducibility and long-term activity. The chain length was varied by using PEGs with different molecular weights (1000 Da, 2000 Da, and 3500 Da). The CSNPs were characterized via UV-Vis spectrophotometry, transmission electron microscopy (TEM), ζ -potential measurements, and lastly SERS measurements. The versatility of the synthesized SERS-active CSNPs was revealed through characterization of optical stability and SERS enhancement at 0, 1, 3, 5, 7 and 14 days. 
    more » « less
  5. Recently, surface-enhanced Raman scattering (SERS) joined other optical methods in making novel anticounterfeiting materials due to the fact that abundant molecular fingerprints in Raman spectra can be less susceptible to fraud. Using these molecular features, it is critical to make novel nanostructures with increased SERS enhancement and stability. Herein, we synthesized star-shaped gold nanoparticles as SERS substrates and applied various Raman probes with these gold nanostars to make SERS tags. The encoded molecular information was successfully decoded using principal component analysis (PCA). These colloidal tags can be further stabilized when embedded in a polymer matrix. We made a prototype ballpoint pen that can do simple writing with these secret SERS inks. 
    more » « less