Obfuscation of the orthogonal frequency-division multiplexing (OFDM) physical layer is described in this paper as a means to enhance the security of wireless communication. The standardization of the communication channel between two trusted parties results in a variety of security threats, including vulnerabilities in WPA/WPA2 protocols that allow for the extraction of the software layer encryption key. Obfuscating the physical layer of the OFDM pipeline provides an additional layer of security in the event that the software layer key is compromised and allows for rolling updates of the physical layer key without altering the software layer key. The interleaver stage of the OFDM pipeline is redesigned to utilize a physical layer key, which is termed Phy-Leave. The Phy-Leave interleaver is evaluated through both MATLAB simulation and hardware prototyping on the Software Defined Communication (SDC) testbed using a Virtex6 FPGA. The implemented rolling physical layer key policy and Phy-Leave system resulted in a less than 1% increase in the area of a Virtex6 FPGA, demonstrating physical layer obfuscation as a means to increase the security of wireless communication without a significant cost in hardware.
more »
« less
Physical Layer Encryption for Wireless OFDM Communication Systems
Our everyday lives are impacted by the widespread adoption of wireless communication systems integral to residential, industrial, and commercial settings. Devices must be secure and reliable to support the emergence of large scale heterogeneous networks. Higher layer encryption techniques such as Wi-Fi Protected Access (WPA/WPA2) are vulnerable to threats, including even the latest WPA3 release. Physical layer security leverages existing components of the physical or PHY layer to provide a low-complexity solution appropriate for wireless devices. This work presents a PHY layer encryption technique based on frequency induction for Orthogonal Frequency Division Multiplexing (OFDM) signals to increase security against eavesdroppers. The secure transceiver consists of a key to frequency shift mapper, encryption module, and modified synchronizer for decryption. The system has been implemented on a Virtex-7 FPGA. The additional hardware overhead incurred on the Virtex-7 for both the transmitter and the receiver is low. Both simulation and hardware evaluation results demonstrate that the proposed system is capable of providing secure communication from an eavesdropper with no decrease in performance as compared with the baseline case of a standard OFDM transceiver. The techniques developed in this paper provide greater security to OFDM-based wireless communication systems.
more »
« less
- PAR ID:
- 10178107
- Date Published:
- Journal Name:
- Journal of Hardware and Systems Security
- ISSN:
- 2509-3428
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Novel transmission schemes, enabled by recent advances in the fields of metamaterial (MTM), leaky-wave antenna (LWA) and directional modulation, are proposed for enhancing the physical layer (PHY) security. MTM-LWAs, which offer compact, integrated, and cost-effective alternatives to the classic phased-array architectures, are particularly of interest for emerging wireless communication systems including Internet-of-Things (IoT). The proposed secure schemes are devised to accomplish the functionalities of directional modulation (DM) transmitters for orthogonal frequency-division multiplexing (OFDM) and non-contiguous (NC) OFDM transmissions, while enjoying the implementation benefits of MTM-LWAs. Specifically, transmitter architectures based on the idea of time-modulated MTM-LWA have been put forth as a promising solution for PHY security for the first time. The PHY security for the proposed schemes are investigated from the point of view of both passive and active attacks where an adversary aims to decode secret information and feed spurious data to the legitimate receiver, respectively. Numerical simulations reveal that even when the adversary employs sophisticated state-of-the-art deep learning based attacks, the proposed transmission schemes are resistant to these attacks and reliably guarantee system security.more » « less
-
Integrated sensing and communication (ISAC) is considered an emerging technology for 6th-generation (6G) wireless and mobile networks. It is expected to enable a wide variety of vertical applications, ranging from unmanned aerial vehicles (UAVs) detection for critical infrastructure protection to physiological sensing for mobile healthcare. Despite its significant socioeconomic benefits, ISAC technology also raises unique challenges in system security and user privacy. Being aware of the security and privacy challenges, understanding the trade-off between security and communication performance, and exploring potential countermeasures in practical systems are critical to a wide adoption of this technology in various application scenarios. This talk will discuss various security and privacy threats in emerging ISAC systems with a focus on communication-centric ISAC systems, that is, using the cellular or WiFi infrastructure for sensing. We will then examine potential mechanisms to secure ISAC systems and protect user privacy at the physical and data layers under different sensing modes. At the wireless physical (PHY) layer, an ISAC system is subject to both passive and active attacks, such as unauthorized passive sensing, unauthorized active sensing, signal spoofing, and jamming. Potential countermeasures include wireless channel/radio frequency (RF) environment obfuscation, waveform randomization, anti-jamming communication, and spectrum/RF monitoring. At the data layer, user privacy could be compromised during data collection, sharing, storage, and usage. For sensing systems powered by artificial intelligence (AI), user privacy could also be compromised during the model training and inference stages. An attacker could falsify the sensing data to achieve a malicious goal. Potential countermeasures include the application of privacy enhancing technologies (PETs), such as data anonymization, differential privacy, homomorphic encryption, trusted execution, and data synthesis.more » « less
-
Many physical-layer security works in the literature rely on purely theoretical work or simulated results to establish the value of physical-layer security in securing communications. We consider the secrecy capacity of a wireless Gaussian wiretap channel using channel sounding measurements to analyze the potential for secure communication in a real-world scenario. A multi-input, multi-output, multi-eavesdropper (MIMOME) system is deployed using orthogonal frequency division multiplexing (OFDM) over an 802.11n wireless network. Channel state information (CSI) measurements were taken in an indoor environment to analyze time-varying scenarios and spatial variations. It is shown that secrecy capacity is highly affected by environmental changes, such as foot traffic, network congestion, and propagation characteristics of the physical environment. We also present a numerical method for calculating MIMOME secrecy capacity in general and comment on the use of OFDM with regard to calculating secrecy capacity.more » « less
-
As aspects of our daily lives become more interconnected with the emergence of the Internet of Things (IoT), it is imperative that our devices are reliable and secure from threats. Vulnerabilities of Wi-Fi Protected Access (WPA/WPA2) have been exposed in the past, motivating the use of multiple security techniques, even with the release of WPA3. Physical layer security leverages existing components of communication systems to enable methods of protecting devices that are well-suited for IoT applications. In this work, we provide a low-complexity technique for generating secret keys at the Physical layer to enable improved IoT security. We leverage the existing carrier frequency offset (CFO) and channel estimation components of Orthogonal Frequency Division Multiplexing (OFDM) receivers for an efficient approach. The key generation algorithm we propose focuses on the unique CFO and channel experienced between a pair of desired nodes, and to the best of our understanding, the combination of the features has not been examined previously for the purpose of secret key generation. Our techniques are appropriate for IoT devices, as they do not require extensive processing capabilities and are based on second order statistics. We obtain experimental results using USRP N210 software defined radios and analyze the performance of our methods in post-processing. Our techniques improve the capability of desired nodes to establish matching secret keys, while hindering the threat of an eavesdropper, and are useful for protecting future IoT devices.more » « less
An official website of the United States government

