The advancement of future large‐scale wireless networks necessitates the development of cost‐effective and scalable security solutions. Specifically, physical layer (PHY) security has been put forth as a cost‐effective alternative to cryptographic mechanisms that can circumvent the need for explicit key exchange between communication devices. Herein, a space–time‐modulated digitally‐coded metamaterial (MTM) leaky wave antenna (LWA) is proposed that can enable PHY security by achieving the functionalities of directional modulation (DM) using a machine learning‐aided branch‐and‐bound (B&B) optimized coding sequence. Theoretically, it is first shown that the proposed space–time MTM antenna can achieve DM through both the spatial and spectral manipulation of the orthogonal frequency division multiplexing signal. Simulation results are then provided as proof‐of‐principle, demonstrating the applicability of the approach for achieving DM in various communication settings. Furthermore, a prototype of the proposed architecture controlled by a field‐programmable gate array is realized, which achieves DM via an optimized coding sequence carried out by the learning‐aided B&B algorithm corresponding to the states of the MTM LWA's unit cells. Experimental results confirm the theory behind the space–time‐modulated MTM LWA in achieving DM, which is observed via both the spectral harmonic patterns and bit error rate measurements.
more »
« less
Time-Varying Metamaterial-Enabled Directional Modulation Schemes for Physical Layer Security in Wireless Communication Links
Novel transmission schemes, enabled by recent advances in the fields of metamaterial (MTM), leaky-wave antenna (LWA) and directional modulation, are proposed for enhancing the physical layer (PHY) security. MTM-LWAs, which offer compact, integrated, and cost-effective alternatives to the classic phased-array architectures, are particularly of interest for emerging wireless communication systems including Internet-of-Things (IoT). The proposed secure schemes are devised to accomplish the functionalities of directional modulation (DM) transmitters for orthogonal frequency-division multiplexing (OFDM) and non-contiguous (NC) OFDM transmissions, while enjoying the implementation benefits of MTM-LWAs. Specifically, transmitter architectures based on the idea of time-modulated MTM-LWA have been put forth as a promising solution for PHY security for the first time. The PHY security for the proposed schemes are investigated from the point of view of both passive and active attacks where an adversary aims to decode secret information and feed spurious data to the legitimate receiver, respectively. Numerical simulations reveal that even when the adversary employs sophisticated state-of-the-art deep learning based attacks, the proposed transmission schemes are resistant to these attacks and reliably guarantee system security.
more »
« less
- Award ID(s):
- 2028823
- PAR ID:
- 10348167
- Date Published:
- Journal Name:
- ACM Journal on Emerging Technologies in Computing Systems
- ISSN:
- 1550-4832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Recently, research on sixth-generation (6G) networks has gained significant interest. 6G is expected to enable a wide-range of applications that fifth-generation (5G) networks will not be able to serve reliably, such as tactile Internet. Additionally, 6G is expected to offer Terabits per second (Tbps) data rates, 10 times lower latency, and near 100% coverage, compared to 5G. Thus, 6G is expected to expand across all available spectrums including terahertz (THz) and optical frequency bands. In this manuscript, mixed-carrier communication (MCC) is investigated as a novel physical layer (PHY) design for 6G networks. The proposed MCC version in this study is based on visible light communication (VLC). MCC enables a unified transmission PHY design to connect devices with different complexities, simultaneously. The design trade-offs and the required signal-to-noise ratio (SNR) per individual modulation schemes embedded within MCC are investigated. The complexity analysis shows that a conventional optical OFDM receiver can capture the high-speed bit-stream embedded within MCC. For a forward error correction (FEC) bit-error-rate (BER) threshold of 3.8×10−3, MCC is optimized to maximize the spectral efficiency by embedding 2-beacon phase-shift keying (2-BnPSK) within an MCC envelope on top of 12 bits per beacon position modulation (BPM) symbol.more » « less
-
This paper presents a new turbo decision feedback equalizer and decoder (TDFED) for the orthogonal time-frequency space (OTFS) system of underwater mobile acoustic communications where the communication channel suffers from severe multipath and Doppler effects simultaneously. The proposed TDFED employs a set of feedforward and feedback filters in the time domain instead of the common approach that employs a normalized least mean square equalizer in the delay-Doppler domain. The receiver also utilizes low-complexity improved proportionate normalized least mean square channel estimation in the delay-Doppler domain. Practical OTFS modulation schemes are designed for acoustic transmission at a center frequency of 115 kHz and a symbol rate of 11.5 ksps (kilo-symbols-per-second). Several lake experiments in mobile communication scenarios are conducted to evaluate the proposed OTFS in comparison to the single-carrier coherent modulation (SCCM) and the orthogonal frequency division modulation (OFDM) schemes. The experimental results demonstrate that the proposed OTFS receiver effectively reduces the accuracy requirements of the Doppler compensation algorithm compared to the SCCM and OFDM schemes. The proposed TDFED algorithm achieves a much better bit error rate against long-multipath fading and severe Doppler shift than the existing delay-Doppler domain equalizers.more » « less
-
ZigBee is a popular wireless communication standard for Internet of Things (IoT) networks. Since each ZigBee network uses hop-by-hop network-layer message authentication based Yanchao Zhang Arizona State University Star E E Tree E E R E Mesh E E R E E E on a common network key, it is highly vulnerable to packetC E injection attacks, in which the adversary exploits the compromised network key to inject arbitrary fake packets from any spoofed address to disrupt network operations and conCoordinator C R E sume the network/device resources. In this paper, we present PhyAuth, a PHY hop-by-hop message authentication frameE E C R R E E E R R C R E E Router E E E End Device Figure 1: ZigBee network topologies. work to defend against packet-injection attacks in ZigBee networks. The key idea of PhyAuth is to let each ZigBee E The coordinator acts as a central node responsible for mantransmitter embed into its PHY signals a PHY one-time password (called POTP) derived from a device-specific secret key and an efficient cryptographic hash function. An authentic POTP serves as the transmitter’s PHY transmission permission for the corresponding packet. PhyAuth provides three schemes to embed, detect, and verify POTPs based on different features of ZigBee PHY signals. In addition, PhyAuth involves lightweight PHY signal processing and no change to the ZigBee protocolstack. Comprehensive USRP experiments confirm that PhyAuth can efficiently detect fake packets with very low false-positive and false-negative rates while having a negligible negative impact on normal data transmissions.more » « less
-
Our everyday lives are impacted by the widespread adoption of wireless communication systems integral to residential, industrial, and commercial settings. Devices must be secure and reliable to support the emergence of large scale heterogeneous networks. Higher layer encryption techniques such as Wi-Fi Protected Access (WPA/WPA2) are vulnerable to threats, including even the latest WPA3 release. Physical layer security leverages existing components of the physical or PHY layer to provide a low-complexity solution appropriate for wireless devices. This work presents a PHY layer encryption technique based on frequency induction for Orthogonal Frequency Division Multiplexing (OFDM) signals to increase security against eavesdroppers. The secure transceiver consists of a key to frequency shift mapper, encryption module, and modified synchronizer for decryption. The system has been implemented on a Virtex-7 FPGA. The additional hardware overhead incurred on the Virtex-7 for both the transmitter and the receiver is low. Both simulation and hardware evaluation results demonstrate that the proposed system is capable of providing secure communication from an eavesdropper with no decrease in performance as compared with the baseline case of a standard OFDM transceiver. The techniques developed in this paper provide greater security to OFDM-based wireless communication systems.more » « less
An official website of the United States government

