skip to main content


Title: Parameter-robust multiphysics algorithms for Biot model with application in brain edema simulation
In this paper, we develop parameter-robust numerical algorithms for Biot model and apply the algorithms in brain edema simulations. By introducing an intermediate variable, we derive a multiphysics reformulation of the Biot model. Based on the reformulation, the Biot model is viewed as a generalized Stokes subproblem combining with a reaction–diffusion subproblem. Solving the two subproblems together or separately leads to a coupled or a decoupled algorithm. We conduct extensive numerical experiments to show that the two algorithms are robust with respect to the key physical parameters. The algorithms are applied to study the brain swelling caused by abnormal accumulation of cerebrospinal fluid in injured areas. The effects of the key physical parameters on brain swelling are carefully investigated. It is observed that the permeability has the biggest influence on intracranial pressure (ICP) and tissue deformation; the Young’s modulus and the Poisson ratio do not affect the maximum value of ICP too much but have big influence on the tissue deformation and the developing speed of brain swelling.  more » « less
Award ID(s):
1831950 1700328
NSF-PAR ID:
10178652
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Mathematics and computers in simulation
Volume:
177
ISSN:
0378-4754
Page Range / eLocation ID:
385-403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a new computational fluid dynamics approach for simulating two‐phase flow in hybrid systems containing solid‐free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume‐averaged partial differential equations that asymptotically approach the Navier‐Stokes Volume‐of‐Fluid equations in solid‐free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy‐Brinkman‐Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two‐way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow‐induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open‐source numerical implementation,hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in poro‐visco‐plastic systems.

     
    more » « less
  2. We study numerical algorithms for solving Biot’s model. Based on a three-field reformulation, we present some algorithms that are inspired by the work of Chaabane et al. (Comput MathAppl 75(7):2328–2337) and Lee (Unconditionally stable second order convergent partitioned methods for multiple-network poroelasticity arXiv:1901.06078, 2019) for decoupling the computation of Biot’s model. A new theoretical framework is developed to analyze the algorithms. Considering a uniform temporal discretization, these algorithms solve the coupled model on the first time level. On the remaining time levels, one algorithm solves a reaction-diffusion subproblem first and then solves a generalized Stokes subproblem.Another algorithm reverses the order of solving the two subproblems. Our algorithms manage to decouple the numerical computation of the coupled system while retaining the convergence properties of the original coupled algorithm. Theoretical analysis is conducted to show that these algorithms are unconditionally stable and optimally convergent.Numerical experiments are also carried out to validate the theoretical analysis and demonstrate the advantages of the proposed algorithms. 
    more » « less
  3. This paper is concerned with numerical algorithms for Biot model. By introducing an intermediate variable, the classical 2-field Biot model is written into a 3-field formulation. Based on such a 3-field formulation, we propose a coupled algorithm, some time-extrapolation based decoupled algorithms, and an iterative decoupled algorithm. Our focus is the analysis of the iterative decoupled algorithm. It is shown that the convergence of the iterative decoupled algorithm requires no extra assumptions on physical parameters or stabilization parameters. Numerical experiments are provided to demonstrate the accuracy and efficiency of the proposed method. 
    more » « less
  4. This paper is concerned with numerical algorithms for Biot model. By introducing an intermediate variable, the classical 2-field Biot model is written into a 3-field formulation. Based on such a 3-field formulation, we propose a coupled algorithm, some time-extrapolation based decoupled algorithms, and an iterative decoupled algorithm. Our focus is the analysis of the iterative decoupled algorithm. It is shown that the convergence of the iterative decoupled algorithm requires no extra assumptions on physical parameters or stabilization parameters. Numerical experiments are provided to demonstrate the accuracy and efficiency of the proposed method. 
    more » « less
  5. SUMMARY

    A key initial step in geophysical imaging is to devise an effective means of mapping the sensitivity of an observation to the model parameters, that is to compute its Fréchet derivatives or sensitivity kernel. In the absence of any simplifying assumptions and when faced with a large number of free parameters, the adjoint method can be an effective and efficient approach to calculating Fréchet derivatives and requires just two numerical simulations. In the Glacial Isostatic Adjustment problem, these consist of a forward simulation driven by changes in ice mass and an adjoint simulation driven by fictitious loads that are applied at the observation sites. The theoretical basis for this approach has seen considerable development over the last decade. Here, we present the final elements needed to image 3-D mantle viscosity using a dataset of palaeo sea-level observations. Developments include the calculation of viscosity Fréchet derivatives (i.e. sensitivity kernels) for relative sea-level observations, a modification to the numerical implementation of the forward and adjoint problem that permits application to 3-D viscosity structure, and a recalibration of initial sea level that ensures the forward simulation honours present-day topography. In the process of addressing these items, we build intuition concerning how absolute sea-level and relative sea-level observations sense Earth’s viscosity structure and the physical processes involved. We discuss examples for potential observations located in the near field (Andenes, Norway), far field (Seychelles), and edge of the forebulge of the Laurentide ice sheet (Barbados). Examination of these kernels: (1) reveals why 1-D estimates of mantle viscosity from far-field relative sea-level observations can be biased; (2) hints at why an appropriate differential relative sea-level observation can provide a better constraint on local mantle viscosity and (3) demonstrates that sea-level observations have non-negligible 3-D sensitivity to deep mantle viscosity structure, which is counter to the intuition gained from 1-D radial viscosity Fréchet derivatives. Finally, we explore the influence of lateral variations in viscosity on relative sea-level observations in the Amundsen Sea Embayment and at Barbados. These predictions are based on a new global 3-D viscosity inference derived from the shear-wave speeds of GLAD-M25 and an inverse calibration scheme that ensures compatibility with certain fundamental geophysical observations. Use of the 3-D viscosity inference leads to: (1) generally greater complexity within the kernel; (2) an increase in sensitivity and presence of shorter length-scale features within lower viscosity regions; (3) a zeroing out of the sensitivity kernel within high-viscosity regions where elastic deformation dominates and (4) shifting of sensitivity at a given depth towards distal regions of weaker viscosity. The tools and intuition built here provide the necessary framework to explore inversions for 3-D mantle viscosity based on palaeo sea-level data.

     
    more » « less