skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Multiphase Flow Within and Around Deformable Porous Materials: A Darcy‐Brinkman‐Biot Approach
Abstract We present a new computational fluid dynamics approach for simulating two‐phase flow in hybrid systems containing solid‐free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume‐averaged partial differential equations that asymptotically approach the Navier‐Stokes Volume‐of‐Fluid equations in solid‐free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy‐Brinkman‐Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two‐way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow‐induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open‐source numerical implementation,hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in poro‐visco‐plastic systems.  more » « less
Award ID(s):
1752982
PAR ID:
10449245
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
2
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The coupled hydrology and mechanics of soft porous materials (such as clays, hydrogels, membranes, and biofilms) is an important research area in several fields, including water and energy technologies as well as biomedical engineering. Well‐established models based on poromechanics theory exist for describing these coupled properties, but these models are not adapted to describe systems with more than one characteristic length scale, that is, systems that contain both macropores and micropores. In this paper, we expand upon the well‐known Darcy‐Brinkman formulation of fluid flow in two‐scale porous media to develop a “Darcy‐Brinkman‐Biot” formulation: a general coupled system of equations that approximates the Navier‐Stokes equations in fluid‐filled macropores and resembles the equations for poroelasticity in microporous regions. We parameterized and validated our model for systems that contain either plastic (swelling clay) or elastic microporous regions. In particular, we used our model to predict the permeability of an idealized siliciclastic sedimentary rock as a function of pore water salinity and clay content. Predicted permeability values are well described by a single parametric relation between permeability and clay volume fraction that agrees with existing experimental data sets. Our novel formulation captures the coupled hydro‐chemo‐mechanical properties of sedimentary rocks and other deformable porous media in a manner that can be readily implemented within the framework of Digital Rock Physics. 
    more » « less
  2. Abstract Intracranial aneurysm rupture causes life-threatening sub-arachnoid hemorrhage. Current endovascular devices like coils, flow diverters, and intravascular implants aim to thrombose the aneurysm but have limitations and varying success rates depending on aneurysm characteristics. We propose a new computational framework integrating CFD and topology optimization to design personalized aneurysm implants. The optimization problem aims to reduce blood flow velocity within the aneurysm while ensuring adequate structural integrity of the implant. The fluid dynamics are governed by the Navier-Stokes equations, while the solid mechanics are described by the linear elasticity equations. A Darcy-Brinkman model is employed to simulate flow through the porous implant in the fluid domain, while the Solid Isotropic Material with Penalization (SIMP) method is used to interpolate between solid and void regions in the structural domain during topology optimization. The objective combines fluid energy dissipation ratio and solid strain energy with spatially varying weights. Global and local volume constraints generate personalized implants with porosity and flow-diverting architectures. The approach is demonstrated on patient-specific aneurysm geometries from rotational angiography. This CFD-driven topology optimization method enables personalized aneurysm implant design to potentially improve occlusion rates and reduce complications compared to current devices. Further studies will validate the optimized designs and investigate their efficacy in vitro and in vivo. 
    more » « less
  3. null (Ed.)
    Numerical modelling of deformation in hydromechanical systems can be time-consuming using fully coupled classical numerical methods for large representative porous media samples. In this paper, we present a new two-way coupled partitioned fluid–solid system. The coupled system is applied for simulating geomechanical processes at the pore-scale. We track the deformation of the solid resulting from the drainage of resident fluids in the pores, as well as the evolution of fluid properties from dynamic loading. The finite element method is responsible for capturing the structural deformation in the coupled system while the dynamic pore network is used for modelling multiphase flow in the fluid subsystem. A fictitious fluid–solid interface is created at each pore network-finite element node junction via convex hulling, followed by data exchange using linear interpolation. The results show good agreement with a pre-existing coupled finite volume model and the computations are completed in much less time. 
    more » « less
  4. We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters. 
    more » « less
  5. ABSTRACT In this article, we formulate a computational large‐deformation‐plasticity (LDP) periporomechanics (PPM) paradigm through a multiplicative decomposition of the deformation gradient following the notion of an intermediate stress‐free configuration. PPM is a nonlocal meshless formulation of poromechanics for deformable porous media through integral equations in which a porous material is represented by mixed material points with nonlocal poromechanical interactions. Advanced constitutive models can be readily integrated within the PPM framework. In this paper, we implement a linearly elastoplastic model with Drucker–Prager yield and post‐peak strain softening (loss of cohesion). This is accomplished using the multiplicative decomposition of the nonlocal deformation gradient and the return mapping algorithm for LDP. The paper presents a series of numerical examples that illustrate the capabilities of PPM to simulate the development of shear bands, large plastic deformations, and progressive slope failure mechanisms. We also demonstrate that the PPM results are robust and stable to the material point density (grid spacing). We illustrate the complex retrogressive failure observed in sensitive St. Monique clay that was triggered by toe erosion. The PPM analysis captures the distribution of horst and graben structures that were observed in the failed clay mass. 
    more » « less