skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compute and Visualize Discontinuity Among Neighboring Integral Curves of 2D Vector Fields
This paper studies the discontinuity in the behavior of neighboring integral curves. The discontinuity is measured by a number of selected attributes of integral curves. A variety of attribute fields are defined. The attribute value at any given spatio-temporal point in these fields is assigned by the attribute of the integral curve that passes through this point. This encodes the global behavior of integral curves into a number of scalar fields in an Eulerian fashion, which differs from the previous pathline attribute approach that focuses on the discrete representation of individual pathlines. With this representation, the discontinuity of the integral curve behavior now corresponds to locations in the derived fields where the attribute values have sharp gradients. We show that based on the selected attributes, the extracted discontinuity from the corresponding attribute fields may relate to a number of flow features, such as LCS, vortices, and cusp-like seeding curves. In addition, we study the correlations among different attributes via their pairwise scatter plots. We also study the behavior of the combined attribute fields to understand the spatial correlation that cannot be revealed by the scatter plots. Finally, we integrate our attribute field computation and their discontinuity detection into an interactive system to guide the exploration of various 2D flows.  more » « less
Award ID(s):
1352722
PAR ID:
10178848
Author(s) / Creator(s):
Date Published:
Journal Name:
Topological Methods in Data Analysis and Visualization
Page Range / eLocation ID:
187-203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Users of search systems often reformulate their queries by adding query terms to reflect their evolving information need or to more precisely express their information need when the system fails to surface relevant content. Analyzing these query reformulations can inform us about both system and user behavior. In this work, we study a special category of query reformulations that involve specifying demographic group attributes, such as gender, as part of the reformulated query (e.g., “olympic 2021 soccer results” → “olympic 2021 women‘s soccer results”). There are many ways a query, the search results, and a demographic attribute such as gender may relate, leading us to hypothesize different causes for these reformulation patterns, such as under-representation on the original result page or based on the linguistic theory of markedness. This paper reports on an observational study of gender-specializing query reformulations—their contexts and effects—as a lens on the relationship between system results and gender, based on large-scale search log data from Bing. We find that these reformulations sometimes correct for and other times reinforce gender representation on the original result page, but typically yield better access to the ultimately-selected results. The prevalence of these reformulations—and which gender they skew towards—differ by topical context. However, we do not find evidence that either group under-representation or markedness alone adequately explains these reformulations. We hope that future research will use such reformulations as a probe for deeper investigation into gender (and other demographic) representation on the search result page. 
    more » « less
  2. This work proposes to analyze the time-dependent characteristics of the physical attributes measured along pathlines derived from unsteady flows, which can be represented as a series of time activity curves (TAC). A new TAC-based unsteady flow visualization and analysis framework is proposed. The center of this framework is a new event-based distance metric (EDM) that compares the similarity of two TACs, from which a new spatio-temporal, hierarchical clustering of pathlines based on their physical attributes and an attribute-based pathline exploration are proposed. These techniques are integrated into a visual analytics system, which has been applied to a number of unsteady flow in 2D and 3D to demonstrate its utility. 
    more » « less
  3. In this article, we define Vassiliev measures of complexity for open curves in 3-space. These are related to the coefficients of the enhanced Jones polynomial of open curves in 3-space. These Vassiliev measures are continuous functions of the curve coordinates; as the ends of the curve tend to coincide, they converge to the corresponding Vassiliev invariants of the resulting knot. We focus on the second Vassiliev measure from the enhanced Jones polynomial for closed and open curves in 3-space. For closed curves, this second Vassiliev measure can be computed by a Gauss code diagram and it has an integral formulation, the double alternating self-linking integral. The double alternating self-linking integral is a topological invariant of closed curves and a continuous function of the curve coordinates for open curves in 3-space. For polygonal curves, the double alternating self-linking integral obtains a simpler expression in terms of geometric probabilities. 
    more » « less
  4. Abstract This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called variational autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for the automated conceptual design of mechanisms for robots and machines. 
    more » « less
  5. We introduce a method for high-quality 3D reconstruction from multi-view images. Our method uses a new point-based representation, the regularized dipole sum, which generalizes the winding number to allow for interpolation of per-point attributes in point clouds with noisy or outlier points. Using regularized dipole sums, we represent implicit geometry and radiance fields as per-point attributes of a dense point cloud, which we initialize from structure from motion. We additionally derive Barnes-Hut fast summation schemes for accelerated forward and adjoint dipole sum queries. These queries facilitate the use of ray tracing to efficiently and differentiably render images with our point-based representations, and thus update their point attributes to optimize scene geometry and appearance. We evaluate our method in inverse rendering applications against state-of-the-art alternatives, based on ray tracing of neural representations or rasterization of Gaussian point-based representations. Our method significantly improves 3D reconstruction quality and robustness at equal runtimes, while also supporting more general rendering methods such as shadow rays for direct illumination. 
    more » « less