Bipartite matching markets pair agents on one side of a market with agents, items, or contracts on the opposing side. Prior work addresses online bipartite matching markets, where agents arrive over time and are dynamically matched to a known set of disposable resources. In this paper, we propose a new model, Online Matching with (offline) Reusable Resources under Known Adversarial Distributions
(OM-RR-KAD), in which resources on the offline side are reusable instead of disposable; that is, once matched, resources become available again at some point in the future. We show that our model is tractable by presenting an LP-based adaptive algorithm that achieves an online competitive ratio of 1/2 - epsilon for any given epsilon > 0. We also show that no non-adaptive algorithm can achieve a ratio of 1/2 + o(1) based on the same benchmark LP. Through a data-driven analysis on a massive openly-available dataset, we show our model is robust enough to capture the application of taxi dispatching services and ridesharing systems. We also present heuristics that perform well in practice.
more »
« less
Online and Offline Algorithms for Circuit Switch Scheduling
Motivated by the use of high speed circuit switches in large scale data centers, we consider the problem of circuit switch scheduling. In this problem we are given demands between pairs of servers and the goal is to schedule at every time step a matching between the servers while maximizing the total satisfied demand over time. The crux of this scheduling problem is that once one shifts from one matching to a different one a fixed delay delta is incurred during which no data can be transmitted. For the offline version of the problem we present a (1-(1/e)-epsilon) approximation ratio (for any constant epsilon >0). Since the natural linear programming relaxation for the problem has an unbounded integrality gap, we adopt a hybrid approach that combines the combinatorial greedy with randomized rounding of a different suitable linear program. For the online version of the problem we present a (bi-criteria) ((e-1)/(2e-1)-epsilon)-competitive ratio (for any constant epsilon >0 ) that exceeds time by an additive factor of O(delta/epsilon). We note that no uni-criteria online algorithm is possible. Surprisingly, we obtain the result by reducing the online version to the offline one.
more »
« less
- Award ID(s):
- 1717947
- NSF-PAR ID:
- 10178887
- Date Published:
- Journal Name:
- Leibniz international proceedings in informatics
- Volume:
- 150
- ISSN:
- 1868-8969
- Page Range / eLocation ID:
- 27:1--27:14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a weighted approach to compute a maximum cardinality matching in an arbitrary bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite graph G(A cup B,E) with edge weights of 0 or 1. Let w <= n be an upper bound on the weight of any matching in G. Consider the subgraph induced by all the edges of G with a weight 0. Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We present an algorithm to compute a maximum cardinality matching in G in O~(m(sqrt{w} + sqrt{r} + wr/n)) time. When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m sqrt{n}) time. However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r are sub-linear in n and wr=O(n^{gamma}) for gamma < 3/2, then we can compute maximum cardinality matching in G in o(m sqrt{n}) time. Using our algorithm, we obtain a new O~(n^{4/3}/epsilon^4) time algorithm to compute an epsilon-approximate bottleneck matching of A,B subsetR^2 and an 1/(epsilon^{O(d)}}n^{1+(d-1)/(2d-1)}) poly log n time algorithm for computing epsilon-approximate bottleneck matching in d-dimensions. All previous algorithms take Omega(n^{3/2}) time. Given any graph G(A cup B,E) that has an easily computable balanced vertex separator for every subgraph G'(V',E') of size |V'|^{delta}, for delta in [1/2,1), we can apply our algorithm to compute a maximum matching in O~(mn^{delta/1+delta}) time improving upon the O(m sqrt{n}) time taken by the HK-Algorithm.more » « less
-
Bipartite-matching markets pair agents on one side of a market with agents, items, or contracts on the opposing side. Prior work addresses online bipartite-matching markets, where agents arrive over time and are dynamically matched to a known set of disposable resources. In this article, we propose a new model, Online Matching with (offline) Reusable Resources under Known Adversarial Distributions ( OM-RR-KAD ) , in which resources on the offline side are reusable instead of disposable; that is, once matched, resources become available again at some point in the future. We show that our model is tractable by presenting an LP-based non-adaptive algorithm that achieves an online competitive ratio of ½-ϵ for any given constant ϵ > 0. We also show that no adaptive algorithm can achieve a ratio of ½ + o (1) based on the same benchmark LP. Through a data-driven analysis on a massive openly available dataset, we show our model is robust enough to capture the application of taxi dispatching services and ride-sharing systems. We also present heuristics that perform well in practice.more » « less
-
Abstract We study a fundamental online job admission problem where jobs with deadlines arrive online over time at their release dates, and the task is to determine a preemptive single-server schedule which maximizes the number of jobs that complete on time. To circumvent known impossibility results, we make a standard slackness assumption by which the feasible time window for scheduling a job is at least $$1+\varepsilon $$ 1 + ε times its processing time, for some $$\varepsilon >0$$ ε > 0 . We quantify the impact that different provider commitment requirements have on the performance of online algorithms. Our main contribution is one universal algorithmic framework for online job admission both with and without commitments. Without commitment, our algorithm with a competitive ratio of $$\mathcal {O}(1/\varepsilon )$$ O ( 1 / ε ) is the best possible (deterministic) for this problem. For commitment models, we give the first non-trivial performance bounds. If the commitment decisions must be made before a job’s slack becomes less than a $$\delta $$ δ -fraction of its size, we prove a competitive ratio of $$\mathcal {O}(\varepsilon /((\varepsilon -\delta )\delta ^2))$$ O ( ε / ( ( ε - δ ) δ 2 ) ) , for $$0<\delta <\varepsilon $$ 0 < δ < ε . When a provider must commit upon starting a job, our bound is $$\mathcal {O}(1/\varepsilon ^2)$$ O ( 1 / ε 2 ) . Finally, we observe that for scheduling with commitment the restriction to the “unweighted” throughput model is essential; if jobs have individual weights, we rule out competitive deterministic algorithms.more » « less
-
Abstract We consider the problem of computing the partition function $\sum _x e^{f(x)}$ , where $f: \{-1, 1\}^n \longrightarrow {\mathbb R}$ is a quadratic or cubic polynomial on the Boolean cube $\{-1, 1\}^n$ . In the case of a quadratic polynomial f , we show that the partition function can be approximated within relative error $0 < \epsilon < 1$ in quasi-polynomial $n^{O(\ln n - \ln \epsilon )}$ time if the Lipschitz constant of the non-linear part of f with respect to the $\ell ^1$ metric on the Boolean cube does not exceed $1-\delta $ , for any $\delta>0$ , fixed in advance. For a cubic polynomial f , we get the same result under a somewhat stronger condition. We apply the method of polynomial interpolation, for which we prove that $\sum _x e^{\tilde {f}(x)} \ne 0$ for complex-valued polynomials $\tilde {f}$ in a neighborhood of a real-valued f satisfying the above mentioned conditions. The bounds are asymptotically optimal. Results on the zero-free region are interpreted as the absence of a phase transition in the Lee–Yang sense in the corresponding Ising model. The novel feature of the bounds is that they control the total interaction of each vertex but not every single interaction of sets of vertices.more » « less