Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Cloud computing has motivated renewed interest in resource allocation problems with new consumption models. A common goal is to share a resource, such as CPU or I/O bandwidth, among distinct users with different demand patterns as well as different quality of service requirements. To ensure these service requirements, cloud offerings often come with a service level agreement (SLA) between the provider and the users. A SLA specifies the amount of a resource a user is entitled to utilize. In many cloud settings, providers would like to operate resources at high utilization while simultaneously respecting individual SLAs. There is typically amore »Free, publiclyaccessible full text available October 1, 2022

Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. Although these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids andmore »Free, publiclyaccessible full text available October 1, 2022

It is well known that the standard greedy algorithm guarantees a worstcase approximation factor of 1 − 1/e when maximizing a monotone submodular function under a cardinality constraint. However, empirical studies show that its performance is substantially better in practice. This raises a natural question of explaining this improved performance of the greedy algorithm. In this work, we define sharpness for submodular functions as a candidate explanation for this phenomenon. We show that the greedy algorithm provably performs better as the sharpness of the submodular function increases. This improvement ties in closely with the faster convergence rates of first ordermore »

Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson [23] has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., MaxCut, for many others, e.g., MaxSAT and MaxDiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques formore »

The research problem of how to use a highspeed circuit switch, typically an optical switch, to most effectively boost the switching capacity of a datacenter network, has been extensively studied. In this work, we focus on a different but related research problem that arises when multiple (say $s$) parallel circuit switches are used: How to best split a switching workload $D$ into subworkloads $D_1, D_2, ..., D_s$, and give them to the $s$ switches as their respective workloads, so that the overall makespan of the parallel switching system is minimized? Computing such an optimal split is unfortunately NPhard, since themore »

Motivated by the use of high speed circuit switches in large scale data centers, we consider the problem of circuit switch scheduling. In this problem we are given demands between pairs of servers and the goal is to schedule at every time step a matching between the servers while maximizing the total satisfied demand over time. The crux of this scheduling problem is that once one shifts from one matching to a different one a fixed delay delta is incurred during which no data can be transmitted. For the offline version of the problem we present a (1(1/e)epsilon) approximation ratiomore »

In an optimal design problem, we are given a set of linear experiments v1,…,vn∈Rd and k≥d, and our goal is to select a set or a multiset S⊆[n] of size k such that Φ((∑i∈Sviv⊤i)−1) is minimized. When Φ(M)=Determinant(M)1/d, the problem is known as the Doptimal design problem, and when Φ(M)=Trace(M), it is known as the Aoptimal design problem. One of the most common heuristics used in practice to solve these problems is the local search heuristic, also known as the Fedorov’s exchange method (Fedorov, 1972). This is due to its simplicity and its empirical performance (Cook and Nachtrheim, 1980; Millermore »

Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. While these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids, knapsackmore »

We study the Aoptimal design problem where we are given vectors υ1, …, υn ∊ ℝd, an integer k ≥ d, and the goal is to select a set S of k vectors that minimizes the trace of (∑i∊Svivi⊺)−1. Traditionally, the problem is an instance of optimal design of experiments in statistics [35] where each vector corresponds to a linear measurement of an unknown vector and the goal is to pick k of them that minimize the average variance of the error in the maximum likelihood estimate of the vector being measured. The problem also finds applications in sensor placementmore »

Experimental design is a classical area in statistics and has also found new applications in machine learning. In the combinatorial experimental design problem, the aim is to estimate an unknown mdimensional vector x from linear measurements where a Gaussian noise is introduced in each measurement. The goal is to pick k out of the given n experiments so as to make the most accurate estimate of the unknown parameter x. Given a set S of chosen experiments, the most likelihood estimate x0 can be obtained by a least squares computation. One of the robust measures of error estimation is themore »