Polypeptoids, a class of synthetic peptidomimetic polymers, have attracted increasing attention due to their potential for biotechnological applications, such as drug/gene delivery, sensing and molecular recognition. Recent investigations on the solution self-assembly of amphiphilic block copolypeptoids highlighted their capability to form a variety of nanostructures with tailorable morphologies and functionalities. Here, we review our recent findings on the solutions self-assembly of coil-crystalline diblock copolypeptoids bearing alkyl side chains. We highlight the solution self-assembly pathways of these polypeptoid block copolymers and show how molecular packing and crystallization of these building blocks affect the self-assembly behavior, resulting in one-dimensional (1D), two-dimensional (2D) and multidimensional hierarchical polymeric nanostructures in solution.
more »
« less
Tuning Solvent Quality Induces Morphological Phase Transitions in Miktoarm Star Polymer Films
The ordering and kinetics of self-assembly of miktoarm star polymers of the form (An)k–C–(Bn)k in solution and confined between two surfaces are investigated using a coarse-grained molecular dynamics simulation, with the ultimate goal of developing predictive capabilities for these systems. By systematically changing the relative solvent-block interaction for one block, combined with the effect of confining substrate on one side and vapor on the other side, we observed a number of interesting morphologies for an inherently lamellar miktoarm star polymers in the absence of solvent. Furthermore, we also found that in solution the self-assembly kinetics of miktoarm star polymers into cylindrical and lamellar morphologies is completely different from the self-assembly kinetics of linear block copolymers. The findings from the present study can be used to tailor the film morphology of miktoarm star polymers, playing a leading role in guiding the experimentalists for designing this class of materials for different types of applications.
more »
« less
- Award ID(s):
- 1912329
- PAR ID:
- 10178900
- Date Published:
- Journal Name:
- Macromolecules
- ISSN:
- 0024-9297
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.more » « less
-
Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials.more » « less
-
ABSTRACT: Molecular simulations with atomistic or coarse- 6 grained force fields are a powerful approach for understanding and 7 predicting the self-assembly phase behavior of complex molecules. 8 Amphiphiles, block oligomers, and block polymers can form 9 mesophases with different ordered morphologies describing the 10 spatial distribution of the blocks, but entirely amorphous nature for 11 local packing and chain conformation. Screening block oligomer 12 chemistry and architecture through molecular simulations to find 13 promising candidates for functional materials is aided by effective 14 and straightforward morphology identification techniques. Captur- 15 ing 3-dimensional periodic structures, such as ordered network 16 morphologies, is hampered by the requirement that the number of 17 molecules in the simulated system and the shape of the periodic simulation box need to be commensurate with those of the resulting 18 network phase. Common strategies for structure identification include structure factors and order parameters, but these fail to 19 identify imperfect structures in simulations with incorrect system sizes. Building upon pioneering work by DeFever et al. [Chem. Sci. 20 2019, 10, 7503−7515] who implemented a PointNet (i.e., a neural network designed for computer vision applications using point 21 clouds) to detect local structure in simulations of single-bead particles and water molecules, we present a PointNet for detection of 22 nonlocal ordered morphologies of complex block oligomers. Our PointNet was trained using atomic coordinates from molecular 23 dynamics simulation trajectories and synthetic point clouds for ordered network morphologies that were absent from previous 24 simulations. In contrast to prior work on simple molecules, we observe that large point clouds with 1000 or more points are needed 25 for the more complex block oligomers. The trained PointNet model achieves an accuracy as high as 0.99 for globally ordered 26 morphologies formed by linear diblock, linear triblock, and 3-arm and 4-arm star-block oligomers, and it also allows for the discovery 27 of emerging ordered patterns from nonequilibrium systems.more » « less
-
This study investigates the role of chain architecture and block asymmetry on the morphology of AB2 miktoarm star block copolymers (AB2 BCPs) in the strongly segregated regime using molecular dynamics simulations. Notably, the cylindrical morphology in AB2 BCPs persists across a broad compositional range, extending close to fA ≈ 0.5, in agreement with both theoretical and experimental findings. The lamellar morphology observed up to fA ≈ 0.8 matches predictions; however, beyond this point, AB2 BCPs continue to exhibit lamellar structures (disk-like micelles), deviating from the expected transitions to cylindrical or spherical morphologies. This behavior, corroborated by dissipative particle dynamics simulations, is attributed to the B arms’ preference to occupying the outer regions of curved interfaces, which hinders the formation of cylindrical or spherical morphologies. Furthermore, domain spacing results exhibit remarkable agreement with strong-stretching theory (SST) across different morphologies, reinforcing the predictive power of SST. Finally, shape parameter analysis, including metrics like asphericity and acylindricity, underscores the significant impact of chain architecture on these morphological transitions. These findings provide molecular-level insights into how chain architecture and block asymmetry dictate phase behavior and morphological stability in linear and miktoarm BCPs.more » « less
An official website of the United States government

