skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of a PointNet for Detecting Morphologies of Self-Assembled Block Oligomers in Atomistic Simulations
ABSTRACT: Molecular simulations with atomistic or coarse- 6 grained force fields are a powerful approach for understanding and 7 predicting the self-assembly phase behavior of complex molecules. 8 Amphiphiles, block oligomers, and block polymers can form 9 mesophases with different ordered morphologies describing the 10 spatial distribution of the blocks, but entirely amorphous nature for 11 local packing and chain conformation. Screening block oligomer 12 chemistry and architecture through molecular simulations to find 13 promising candidates for functional materials is aided by effective 14 and straightforward morphology identification techniques. Captur- 15 ing 3-dimensional periodic structures, such as ordered network 16 morphologies, is hampered by the requirement that the number of 17 molecules in the simulated system and the shape of the periodic simulation box need to be commensurate with those of the resulting 18 network phase. Common strategies for structure identification include structure factors and order parameters, but these fail to 19 identify imperfect structures in simulations with incorrect system sizes. Building upon pioneering work by DeFever et al. [Chem. Sci. 20 2019, 10, 7503−7515] who implemented a PointNet (i.e., a neural network designed for computer vision applications using point 21 clouds) to detect local structure in simulations of single-bead particles and water molecules, we present a PointNet for detection of 22 nonlocal ordered morphologies of complex block oligomers. Our PointNet was trained using atomic coordinates from molecular 23 dynamics simulation trajectories and synthetic point clouds for ordered network morphologies that were absent from previous 24 simulations. In contrast to prior work on simple molecules, we observe that large point clouds with 1000 or more points are needed 25 for the more complex block oligomers. The trained PointNet model achieves an accuracy as high as 0.99 for globally ordered 26 morphologies formed by linear diblock, linear triblock, and 3-arm and 4-arm star-block oligomers, and it also allows for the discovery 27 of emerging ordered patterns from nonequilibrium systems.  more » « less
Award ID(s):
2011401
PAR ID:
10228125
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The journal of physical chemistry
ISSN:
1520-6106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-assembling dendrimers have facilitated the discovery of periodic and quasiperiodic arrays of supramolecular architectures and the diverse functions derived from them. Examples are liquid quasicrystals and their approximants plus helical columns and spheres, including some that disregard chirality. The same periodic and quasiperiodic arrays were subsequently found in block copolymers, surfactants, lipids, glycolipids, and other complex molecules. Here we report the discovery of lamellar and hexagonal periodic arrays on the surface of vesicles generated from sequence-defined bicomponent monodisperse oligomers containing lipid and glycolipid mimics. These vesicles, known as glycodendrimersomes, act as cell-membrane mimics with hierarchical morphologies resembling bicomponent rafts. These nanosegregated morphologies diminish sugar–sugar interactions enabling stronger binding to sugar-binding proteins than densely packed arrangements of sugars. Importantly, this provides a mechanism to encode the reactivity of sugars via their interaction with sugar-binding proteins. The observed sugar phase-separated hierarchical arrays with lamellar and hexagonal morphologies that encode biological recognition are among the most complex architectures yet discovered in soft matter. The enhanced reactivity of the sugar displays likely has applications in material science and nanomedicine, with potential to evolve into related technologies. 
    more » « less
  2. Identifying local structure in molecular simulations is of utmost importance. The most common existing approach to identify local structure is to calculate some geometrical quantity referred to as an order parameter. In simple cases order parameters are physically intuitive and trivial to develop ( e.g. , ion-pair distance), however in most cases, order parameter development becomes a much more difficult endeavor ( e.g. , crystal structure identification). Using ideas from computer vision, we adapt a specific type of neural network called a PointNet to identify local structural environments in molecular simulations. A primary challenge in applying machine learning techniques to simulation is selecting the appropriate input features. This challenge is system-specific and requires significant human input and intuition. In contrast, our approach is a generic framework that requires no system-specific feature engineering and operates on the raw output of the simulations, i.e. , atomic positions. We demonstrate the method on crystal structure identification in Lennard-Jones (four different phases), water (eight different phases), and mesophase (six different phases) systems. The method achieves as high as 99.5% accuracy in crystal structure identification. The method is applicable to heterogeneous nucleation and it can even predict the crystal phases of atoms near external interfaces. We demonstrate the versatility of our approach by using our method to identify surface hydrophobicity based solely upon positions and orientations of surrounding water molecules. Our results suggest the approach will be broadly applicable to many types of local structure in simulations. 
    more » « less
  3. The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin–tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures. 
    more » « less
  4. We propose a generative model of unordered point sets, such as point clouds, in the form of an energy-based model, where the energy function is parameterized by an input permutation- invariant bottom-up neural network. The energy function learns a coordinate encoding of each point and then aggregates all individual point features into an energy for the whole point cloud. We call our model the Generative PointNet because it can be derived from the discriminative PointNet. Our model can be trained by MCMC based maximum likelihood learning (as well as its variants), without the help of any assisting networks like those in GANs and VAEs. Unlike most point cloud generators that rely on hand-crafted distance metrics, our model does not require any hand-crafted distance metric for the point cloud generation, because it synthesizes point clouds by matching observed examples in terms of statistical properties defined by the energy function. Furthermore, we can learn a short run MCMC toward the energy-based model as a flow-like generator for point cloud reconstruction and interpolation. The learned point cloud representation can be useful for point cloud classification. Experiments demonstrate the advantages of the proposed generative model of point clouds. 
    more » « less
  5. Chemical organization in reaction-diffusion systems offers a strategy for the generation of materials with ordered morphologies and structural hierarchy. Periodic structures are formed by either molecules or nanoparticles. On the premise of new directing factors and materials, an emerging frontier is the design of systems in which the precipitation partners are nanoparticles and molecules. We show that solvent evaporation from a suspension of cellulose nanocrystals (CNCs) and l -(+)-tartaric acid [ l -(+)-TA] causes phase separation and precipitation, which, being coupled with a reaction/diffusion, results in rhythmic alternation of CNC-rich and l -(+)-TA–rich rings. The CNC-rich regions have a cholesteric structure, while the l -(+)-TA–rich bands are formed by radially aligned elongated bundles. The moving edge of the pattern propagates with a finite constant velocity, which enables control of periodicity by varying film preparation conditions. This work expands knowledge about self-organizing reaction-diffusion systems and offers a strategy for the design of self-organizing materials. 
    more » « less