skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Incorporating Complexity in Computing Camps for High School Students – A Report on the Summer Computing Academy Program at Texas A&M University
Summer computing camps for high school students are rapidly becoming a staple at High Performance Computing (HPC) centers and Computer Science departments around the country. Developing complexity in education in these camps remains a challenge. Here, we present a report about the implementation of such a program. The Summer Computing Academy (SCA) at is a weeklong cybertraining1 program offered to high school students by High Performance Research Computing (HPRC) at Texas A&M University (Texas A&M; TAMU). The Summer Computing Academy effectively uses cloud computing paradigms, artificial intelligence technologies coupled with Raspberry Pi micro-controllers and sensors to demonstrate “computational thinking”. The program is steeped in well- reviewed pedagogy; the refinement of the educational methods based on constant assessment is a critical factor that has contributed to its success. The hands-on exercises included in the program have received rave reviews from parents and students alike. The camp program is financially self-sufficient and has successfully broadened participation of underrepresented groups in computing by including diverse groups of students. Modules from the SCA program may be implemented at other institutions with relative ease and promote cybertraining efforts nationwide.  more » « less
Award ID(s):
1730695
PAR ID:
10178936
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of computational science education
Volume:
11
Issue:
1
ISSN:
2153-4136
Page Range / eLocation ID:
12-20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The migration of infrastructure from on premise installation and maintenance of computing resources to cloud based systems by business of all sizes has been an ongoing event for several years. To minimize capital expenses and allow for demand based operational expenses has increased the need for cloud practitioners with the ability to create and control these resources. The demand for skilled cloud workers ranging from developers to architects has been increasing, and one way to increase the technicians available for these job skills is to start recruitment as early as high school. For high school students interested in the technical side of STEM pathways, the ability to understand, design and work in a cloud environment is now part of critical technical skills. Fluency in cloud and cloud environments, the ability to understand the capabilities of all these modern technologies are necessary technical skills. To support this growing demand of cloud skills, the institution partnered with Amazon Web Services (AWS), the industry leader in cloud computing solutions, to train high school students as early cloud adopters and to be well-prepared for the computing/IT workforce of tomorrow. This academic-industry partnership aims to raise cloud literacy in K-12 by offering a two-week cloud computing bootcamp for high school students selected from traditionally underrepresented groups, Hispanic and/or African Americans. The bootcamp used a combination of team teaching, online sandbox repetition and experimentation, and project-based practice. The AWS materials provided by AWS Academy covered the details of the AWS infrastructure and were coupled with AWS Educate classroom sandboxes for practice. The two-week intensive practice and review certified 21 out of 31 high school students in the AWS Cloud Practitioner certification. This was the first time AWS Academy authorized high school students to take the certification exam and currently the largest cohort of high school students as AWS Cloud Practitioners. This paper presents the details of the pilot implementation of the summer bootcamp part of the cloud literacy initiative. This pilot includes curriculum, pedagogy, and software tools. Surveys were administered to the students to collect their demographic information, assessments of the pedagogical approaches and interest in cloud computing. Also, pre- and post-exam scores were reported to analyze student performance outcomes. These results are presented to show the potential of such an outreach program to build capacity and broaden participation in the computing field through emerging technology. 
    more » « less
  2. Responsive to broadening participation challenges, Mississippi State University (MSU) established the Bulldog Bytes Outreach Program in 2013 with a residential summer camp for middle school girls funded through the National Center for Women in Information Technology (NCWIT). Since then the program has grown to provide co-curricular activities to K12 students throughout the state. Following a pilot offering of an elementary camp in 2016, the Bulldog Bytes program delivered two of these camps in small towns during 2017, supporting a strategy of engaging under-resourced students with computing in their home communities. This paper will detail our project-based approach to learning and share experiences from the elementary camps. 
    more » « less
  3. Responsive to broadening participation challenges, Mississippi State University (MSU) established the Bulldog Bytes Outreach Program in 2013 with a residential summer camp for middle school girls funded through the National Center for Women in Information Technology (NCWIT). Since then the program has grown to provide co-curricular activities to K12 students throughout the state. Following a pilot offering of an elementary camp in 2016, the Bulldog Bytes program delivered two of these camps in small towns during 2017, supporting a strategy of engaging under-resourced students with computing in their home communities. This paper will detail our project-based approach to learning and share experiences from the elementary camps. 
    more » « less
  4. Program leaders put a tremendous amount of thought into how they recruit students for engineering summer camps. Recruitment methods can include information sessions, established partnerships with school districts, and teacher or school counselor nominations of students. This study seeks to assess if the methods used to recruit students broaden participation or have any impact on students’ perceptions of engineering. Two identical week-long summer camps were hosted by the University of Texas at Austin (UT Austin) in the summer of 2022. Camps were entirely free for all campers. A specific goal of the camp was to promote engineering as a career pathway for students from groups that have been historically excluded from STEM majors. Campers were rising 8th and 9th grade students in two cities near UT Austin; this age was intentionally identified as students who have sufficient STEM backgrounds to engage in meaningful engineering design challenges, and who are also at a critical inflection point with respect to decisions that put them on a trajectory to study engineering in college. Summer camp topics ranged from additive manufacturing to the chemical properties of water proofing, and students did activities such as constructing a prosthetic limb from recovered materials or designing an electronic dance game pad. In one camp session, students primarily found out about the camp by being nominated by counselors at their schools, with an intentional focus on recruiting students who might not otherwise be exposed to engineering. In the other camp session, parents signed up campers after hearing about the camp via information sent through the schools. All students who applied were accepted to the camps. Identical pre- and post-camp surveys asked campers questions about their knowledge of what engineers do, their interest in math and science, and what factors are important to them when choosing a career. Survey analysis showed that there were statistically significant differences in answers to questions between the groups in the pre-camp surveys, but post-camp surveys show that these differences disappeared after participating in the summer camp. Students whose parents directly enrolled them in the camp had higher pre-camp interest in science and technology; thus, counselor nominations may be a method to recruit students who might not have been interested in engineering had they not attended the camp. Additionally, prior to participating, campers recruited via counselor nominations had a narrower view of what engineers do than the parent-enrolled campers, but after camp the two groups had similar perceptions of what engineers do. The results of this study confirm literature findings regarding the importance of exposing young learners to engineering as a profession and broaden their views of opportunities in this field. The recruitment methods used for these camps show that nomination-based recruitment methods have the potential for greater impact on changing students’ engineering trajectories. 
    more » « less
  5. Creating pathways that stimulate high school learners’ interest in advanced topics with the goal of building a diverse, gender-balanced, future-ready workforce is crucial. To this end, we present the curriculum of a new, high school computer science course under development called Computer Science Frontiers (CSF). Building on the foundations set by the AP Computer Science Principles course, we seek to dramatically expand access, especially for high school girls, to the most exciting and emerging frontiers of computing, such as distributed computation, the internet of things (IoT), cybersecurity, and machine learning. The modular, open-access, hands-on curriculum provides an engaging introduction to these advanced topics in high school because currently they are accessible only to CS majors in college. It also focuses on other 21st century skills required to productively leverage computational methods and tools in virtually every profession. To address the dire gender disparity in computing, the curriculum was designed to engage female students by focusing on real world application domains, such as climate change and health, by including social applications and by emphasizing collaboration and teamwork. Our paper describes the design of curricular modules on Distributed Computing, IoT/Cybersecurity, and AI/Machine Learning. All project-based activities are designed to be collaborative, situated in contexts that are engaging to high school students, and often involve real-world world data. We piloted these modules in teacher PD workshops with 8 teachers from North Carolina, Tennessee, Massachusetts, Pennsylvania, and New York who then facilitated virtual summer camps with high school students in 2020 and 2021. Findings from teacher PD workshops as well as student camps indicate high levels of engagement in and enthusiasm for the curricular activities and topics. Post-intervention surveys suggest that these experiences generate student interest exploring these ideas further and connections to areas of interest to students. 
    more » « less