Abstract Topological field‐effect transistor is a revolutionary concept that physical fields are used to switch on and off quantum topological states of the condensed matter. Although this emerging concept has been explored in electronics, how to realize it in the acoustic realm remains elusive. In this work, a class of magnetoactive acoustic topological transistors capable of on‐demand switching on and off topological states and reconfiguring topological edges with external magnetic fields is presented. The key mechanism is to harness magnetic fields to tune air‐cavity volumes within acoustic chambers, thus breaking or preserving the inversion symmetry to manifest or conceal the quantum valley Hall effect. To switch the topological transport beyond the in‐plane routes, a magneto‐tuned non‐topological band gap to allow or forbid the wave transport out‐of‐plane is harnessed. With the reversible magnetic control, on‐demand switching of topological routes to realize topological field‐effect waveguides and wave regulators is demonstrated. Analogous to the impact of semiconductor transistors on modern electronics, this work may expand the scope of topological acoustics by achieving unprecedented functions in acoustic modulation.
more »
« less
Sharkskin-Inspired Magnetoactive Reconfigurable Acoustic Metamaterials
Most of the existing acoustic metamaterials rely on architected structures with fixed configurations, and thus, their properties cannot be modulated once the structures are fabricated. Emerging active acoustic metamaterials highlight a promising opportunity to on-demand switch property states; however, they typically require tethered loads, such as mechanical compression or pneumatic actuation. Using untethered physical stimuli to actively switch property states of acoustic metamaterials remains largely unexplored. Here, inspired by the sharkskin denticles, we present a class of active acoustic metamaterials whose configurations can be on-demand switched via untethered magnetic fields, thus enabling active switching of acoustic transmission, wave guiding, logic operation, and reciprocity. The key mechanism relies on magnetically deformable Mie resonator pillar (MRP) arrays that can be tuned between vertical and bent states corresponding to the acoustic forbidding and conducting, respectively. The MRPs are made of a magnetoactive elastomer and feature wavy air channels to enable an artificial Mie resonance within a designed frequency regime. The Mie resonance induces an acoustic bandgap, which is closed when pillars are selectively bent by a sufficiently large magnetic field. These magnetoactive MRPs are further harnessed to design stimuli-controlled reconfigurable acoustic switches, logic gates, and diodes. Capable of creating the first generation of untethered-stimuli-induced active acoustic metadevices, the present paradigm may find broad engineering applications, ranging from noise control and audio modulation to sonic camouflage.
more »
« less
- Award ID(s):
- 1762567
- PAR ID:
- 10179396
- Date Published:
- Journal Name:
- Research
- Volume:
- 2020
- ISSN:
- 2639-5274
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli‐responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative‐modulus and cavity‐induced negative density are integrated to achieve flexible switching between single‐negative and double‐negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes.more » « less
-
Abstract 2D metamaterials have immense potential in acoustics, optics, and electromagnetic applications due to their unique properties and ability to conform to curved substrates. Active metamaterials have attracted significant research attention because of their on‐demand tunable properties and performances through shape reconfigurations. 2D active metamaterials often achieve active properties through internal structural deformations, which lead to changes in overall dimensions. This demands corresponding alterations of the conforming substrate, or the metamaterial fails to provide complete area coverage, which can be a significant limitation for their practical applications. To date, achieving area‐preserving active 2D metamaterials with distinct shape reconfigurations remains a prominent challenge. In this paper, magneto‐mechanical bilayer metamaterials are presented that demonstrate area density tunability with area‐preserving capability. The bilayer metamaterials consist of two arrays of magnetic soft materials with distinct magnetization distributions. Under a magnetic field, each layer behaves differently, which allows the metamaterial to reconfigure its shape into multiple modes and to significantly tune its area density without changing its overall dimensions. The area‐preserving multimodal shape reconfigurations are further exploited as active acoustic wave regulators to tune bandgaps and wave propagations. The bilayer approach thus provides a new concept for the design of area‐preserving active metamaterials for broader applications.more » « less
-
Abstract Emerging transformable lattice structures provide promising paradigms to reversibly switch lattice configurations, thereby enabling their properties to be tuned on demand. The existing transformation mechanisms are limited to nonfracture deformation, such as origami, instability, shape memory, and liquid crystallinity. In this study, we present a class of transformable lattice structures enabled by fracture and shape-memory-assisted healing. The lattice structures are additively manufactured with a molecularly designed photopolymer capable of both fracture healing and shape memory. We show that 3D-architected lattice structures with various volume fractions can heal fractures and fully restore stiffness and strength over two to ten healing cycles. In addition, coupled with the shape-memory effect, the lattice structures can recover fracture-associated distortion and then heal fracture interfaces, thereby enabling healing of lattice wing damages, mode-I fractures, dent-induced crashes, and foreign-object impacts. Moreover, by harnessing the coupling of fracture and shape-memory-assisted healing, we demonstrate reversible configuration transformations of lattice structures to enable switching among property states of different stiffnesses, vibration transmittances, and acoustic absorptions. These healable, memorizable, and transformable lattice structures may find broad applications in next-generation aircraft panels, automobile frames, body armor, impact mitigators, vibration dampers, and acoustic modulators.more » « less
-
Active acoustic metamaterials are one path to acoustic properties difficult to realize with passive structures, especially for broadband applications. Here, we experimentally demonstrate a 2D metamaterial composed of coupled sensor-driver unit cells with effective bulk modulus ([Formula: see text]) precisely tunable through adjustments of the amplitude and phase of the transfer function between pairs of sensors and drivers present in each cell. This work adopts the concepts of our previous theoretical study on polarized sources to realize acoustic metamaterials in which the active unit cells are strongly interacting with each other. To demonstrate the capability of our active metamaterial to produce on-demand negative, fractional, and large [Formula: see text], we matched the scattered field from an incident pulse measured in a 2D waveguide with the sound scattered by equivalent continuous materials obtained in numerical simulations. Our approach benefits from being highly scalable, as the unit cells are independently controlled and any number of them can be arranged to form arbitrary geometries without added computational complexity.more » « less
An official website of the United States government

