skip to main content

This content will become publicly available on September 5, 2023

Title: Programmable bulk modulus in acoustic metamaterials composed of strongly interacting active cells
Active acoustic metamaterials are one path to acoustic properties difficult to realize with passive structures, especially for broadband applications. Here, we experimentally demonstrate a 2D metamaterial composed of coupled sensor-driver unit cells with effective bulk modulus ([Formula: see text]) precisely tunable through adjustments of the amplitude and phase of the transfer function between pairs of sensors and drivers present in each cell. This work adopts the concepts of our previous theoretical study on polarized sources to realize acoustic metamaterials in which the active unit cells are strongly interacting with each other. To demonstrate the capability of our active metamaterial to produce on-demand negative, fractional, and large [Formula: see text], we matched the scattered field from an incident pulse measured in a 2D waveguide with the sound scattered by equivalent continuous materials obtained in numerical simulations. Our approach benefits from being highly scalable, as the unit cells are independently controlled and any number of them can be arranged to form arbitrary geometries without added computational complexity.
Authors:
;
Award ID(s):
1942901
Publication Date:
NSF-PAR ID:
10385227
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
10
Page Range or eLocation-ID:
101701
ISSN:
0003-6951
Sponsoring Org:
National Science Foundation
More Like this
  1. Active acoustic metamaterials incorporate electric circuit elements that input energy into an otherwise passive medium to aptly modulate the effective material properties. Here, we propose an active acoustic metamaterial with Willis coupling to drastically extend the tunability of the effective density and bulk modulus with the accessible parameter range enlarged by at least two orders of magnitude compared to that of a non-Willis metamaterial. Traditional active metamaterial designs are based on local resonances without considering the Willis coupling that limit their accessible effective material parameter range. Our design adopts a unit cell structure with two sensor-transducer pairs coupling the acoustic response on both sides of the metamaterial by detecting incident waves and driving active signals asymmetrically superimposed onto the passive response of the material. The Willis coupling results from feedback control circuits with unequal gains. These asymmetric feedback control circuits use Willis coupling to expand the accessible range of the effective density and bulk modulus of the metamaterial. The extreme effective material parameters realizable by the metamaterials will remarkably broaden their applications in biomedical imaging, noise control, and transformation acoustics-based cloaking.

  2. In 1920, Ramanujan studied the asymptotic differences between his mock theta functions and modular theta functions, as [Formula: see text] tends towards roots of unity singularities radially from within the unit disk. In 2013, the bounded asymptotic differences predicted by Ramanujan with respect to his mock theta function [Formula: see text] were established by Ono, Rhoades, and the author, as a special case of a more general result, in which they were realized as special values of a quantum modular form. Our results here are threefold: we realize these radial limit differences as special values of a partial theta function, provide full asymptotic expansions for the partial theta function as [Formula: see text] tends towards roots of unity radially, and explicitly evaluate the partial theta function at roots of unity as simple finite sums of roots of unity.
  3. We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective equilibrium (RCE) absolute angular momentum [Formula: see text] satisfies [Formula: see text] or [Formula: see text] or where the RCE absolute vorticity [Formula: see text] satisfies [Formula: see text]; all latitudes where the RCE zonal wind exceeds the AMC zonal wind; and over a range such that depth-averaged potential temperature is continuous and that energy is conserved. The AMC model requires knowledge of the ascent latitude [Formula: see text], which needs not equal the RCE forcing maximum latitude [Formula: see text]. Whatever the value of [Formula: see text], we demonstrate that an AMC cell must extend at least as far into the winter hemisphere as the summer hemisphere. The equal-area model predicts [Formula: see text], always placing it poleward of [Formula: see text]. As [Formula: see text] is moved poleward (at a given thermal Rossby number), the equal-area-predicted Hadley circulation becomes implausibly large, while both [Formula: see text] and [Formula: see text] become increasingly displaced poleward ofmore »the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All homogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in extent controlled by the span of supercritical forcing.

    « less
  4. Performance of photonic devices critically depends upon their efficiency on controlling the flow of light therein. In the recent past, the implementation of plasmonics, two-dimensional (2D) materials and metamaterials for enhanced light-matter interaction (through concepts such as sub-wavelength light confinement and dynamic wavefront shape manipulation) led to diverse applications belonging to spectroscopy, imaging and optical sensing etc. While 2D materials such as graphene, MoS2 etc., are still being explored in optical sensing in last few years, the application of plasmonics and metamaterials is limited owing to the involvement of noble metals having a constant electron density. The capability of competently controlling the electron density of noble metals is very limited. Further, due to absorption characteristics of metals, the plasmonic and metamaterial devices suffer from large optical loss. Hence, the photonic devices (sensors, in particular) require that an efficient dynamic control of light at nanoscale through field (electric or optical) variation using substitute low-loss materials. One such option may be plasmonic metasurfaces. Metasurfaces are arrays of optical antenna-like anisotropic structures (sub-wavelength size), which are designated to control the amplitude and phase of reflected, scattered and transmitted components of incident light radiation. The present review put forth recent development on metamaterial andmore »metastructure-based various sensors.« less
  5. Abstract Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enablemore »quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future.« less